
How to choose a task? Mismatches in perspectives of newcomers
and existing contributors

Fabio Santos

Northern Arizona University

fabio_santos@nau.edu, United States

Bianca Trinkenreich

Northern Arizona University

bianca_trinkenreich@nau.edu

United States

João Felipe Pimentel

Northern Arizona University

joao.pimentel@nau.edu, United States

Igor Wiese

Universidade Tecnolóogica Federal do

Paraná

igor@utfpr.edu.br, Brazil

Igor Steinmacher

Northern Arizona University

Igor.Steinmacher@nau.edu, United

States

Anita Sarma

Oregon State University

anita.sarma@oregonstate.edu

United States

Marco A Gerosa

Northern Arizona University

Marco.Gerosa@nau.edu, United

States

ABSTRACT
[Background] Selecting an appropriate task is challenging for

Open Source Software (OSS) project newcomers and a variety of

strategies can help them in this process. [Aims] In this research, we
compare the perspective of maintainers, newcomers, and existing

contributors about the importance of strategies to support this pro-

cess. Our goal is to identify possible gulfs of expectations between

newcomers who are meant to be helped and contributors who have

to put effort into these strategies, which can create friction and

impede the usefulness of the strategies. [Method]We interviewed

maintainers (n=17) and applied inductive qualitative analysis to

derive a model of strategies meant to be adopted by newcomers and

communities. Next, we sent a questionnaire (n=64) to maintainers,

frequent contributors, and newcomers, asking them to rank these

strategies based on their importance. We used the Schulze method

to compare the different rankings from the different types of con-

tributors. [Results]Maintainers and contributors diverged in their

opinions about the relative importance of various strategies. The

results suggest that newcomers want a better contribution process

and more support to onboard, while maintainers expect to solve

questions using the available communication channels. [Conclu-
sions] The gaps in perspectives between newcomers and existing

contributors create a gulf of expectation. OSS communities can

leverage our results to prioritize the strategies considered the most

important by newcomers.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00

https://doi.org/10.1145/3544902.3546236

CCS CONCEPTS
• Software and its engineering→ Open source software.

KEYWORDS
open source software, issue tracker, task management, newcomers,

social coding platform, strategies

ACM Reference Format:
Fabio Santos, Bianca Trinkenreich, João Felipe Pimentel, Igor Wiese, Igor

Steinmacher, Anita Sarma, and Marco A Gerosa. 2022. How to choose a

task?Mismatches in perspectives of newcomers and existing contributors. In

ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM) (ESEM ’22), September 19–23, 2022, Helsinki, Finland.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3544902.3546236

1 INTRODUCTION
Selecting an appropriate task to contribute is one of the most chal-

lenging but crucial steps for newcomers joining open source soft-

ware projects [25, 27–29, 37]. This is a known problem, and projects

employ various strategies to assist them in finding starter tasks.

Existing work presents a compendium of such strategies [11, 17, 31].

For example, research has proposed labeling issues that signal new-

comer friendliness (e.g., starter task, newcomer task, good first

issue) [34] as an important strategy to aid newcomers in identify-

ing tasks they can undertake [1]. Others have proposedmechanisms

that aid newcomers in understanding the issue to be solved [18].

Most of these strategies are based on research on newcomer bar-

riers [29, 31] and contributors’ recommendations for overcoming

them.

A missing piece in our understanding of what newcomers need

is how newcomers’ perspectives fit in with those of existing contrib-

utors. A discrepancy between these two perspectives—newcomers

and existing contributors—can create a gulf of expectations. Such a

gulf, in turn, means that the projects’ strategies are less likely to

succeed, and newcomers continue to struggle.

Our goal in this paper is to investigate the difference in perspec-

tives of newcomers and existing contributors in (i) the strategies

newcomers use to choose a task and (ii) the strategies communities

https://doi.org/10.1145/3544902.3546236
https://doi.org/10.1145/3544902.3546236

ESEM ’22, September 19–23, 2022, Helsinki, FinlandFabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

need to employ to support newcomers. Exploring the different per-

spectives can help OSS communities devise tailored strategies that

match newcomers’ needs.

We aim to answer the following research questions:

RQ1.What strategies help newcomers choose a task in OSS?

RQ2. How do newcomers and existing contributors differ in

their opinions of which strategies are important for newcomers?

We conducted a qualitative study based on interviews with main-

tainers (n=17) to identify strategies that people playing a maintainer

role consider important to assist newcomers. We focused on main-

tainers as they typically have knowledge and ownership of the

project, and strategies they propose have a higher likelihood of

being implemented. We then conducted a follow-up survey with

contributors, maintainers, and newcomers (n=64) to understand

to what extent different stakeholders agreed on the importance of

these strategies.

Our results show that newcomers’ and other contributors’ per-

ceptions are aligned for some strategies. We also found situations in

which newcomers, frequent contributors, and maintainers differ in

their thoughts about what newcomers need to select a task and start

contributing to an OSS project. For example, frequent contributors

and maintainers believed that “Understand the issue” would be the

most important strategy used by newcomers. Still, newcomers had

a different perspective (“set up the environment” was ranked as the

most important). Regarding community strategies, newcomers and

frequent contributors agreed on the importance of good documen-

tation and project quality but differed widely about the importance

of improving newcomer onboarding and contribution processes.

Our results shed light on these discrepancies, and OSS communities

can leverage these results to reflect on their onboarding strategies.

2 RELATEDWORK
Newcomers face a variety of barriers to start contributing to open-

source software, including social interaction problems, documen-

tation issues, lack of knowledge, lack of direction for how to con-

tribute, and high technical complexity [29]. One of those barriers is

related to choosing a task to start contributing to in an OSS repos-

itory [28]. Sometimes it is not clear if the contributor is able to

contribute to the issue reported [28, 29].

Recently, the literature proposed strategies like issue recommen-

dation, different mitigation processes (addressing technical hurdles,

social hurdles, and toxic environment), maintainer empowerment,

issue labeling, and badges to aid newcomers. These strategies fo-

cus on communities [8, 9, 26, 36], contributors [30], or specific

niches [8]. They aim not only to assist newcomers in finding a

task, but also to attract, retain, and keep newcomers engaged. Fig.

1 summarizes the strategies to aid newcomers identified in the

literature.

Community strategies. Steinmacher et al. [27] explored the

social barriers and identified possible mitigation strategies that

communities could employ to support newcomers, such as rec-

ommending mentors, providing automatic greetings, and offering

feedback on newcomers’ contributions. Later, Steinmacher et al.

[26] proposed 13 strategies to help newcomers find a task through

recommendations made by mentors. Among the strategies, they

indicate that communities should identify the complexity and skills

required for finishing a task and scaffold newcomers’ skill acquisi-

tion.

Contributor strategies. Steinmacher et al. [30] devised 14 guide-

lines targeted at contributors and communities and divided these

guidelines into three groups: social (e.g., being proactive - from the

point of view of contributors), technical (e.g., documenting the code

structure - from the point of view of communities), and process

(e.g., finding an easy task to start with - from the point of view of

contributors).

Project strategies. Guizani et al. [8] proposed a total of 48

strategies for projects. They focused on supporting the contribu-

tion in large OSS projects, and included a customized solution for

the Apache Software Foundation - ASF. Pham et al. [16] investi-

gated the contribution process with regard to the testing procedures
and proposed strategies to integrate newcomers into the testing

culture of the project, which includes lowering the barriers and

communicating the project’s culture.

Some studies advocate for employing supportive solutions as

strategies for aiding newcomers in choosing tasks. One approach

consists of creating a supportive environment to smoothly intro-

duce the newcomers to the social and technical skills related to a

project [18]. Other recent approaches aim to label issues to assist

in the selection of new issues [11–13, 17, 38]. For example, Santos

et al. [17] label issues according to the API domains of the project,

intending to let users choose issues related to their skill set. Other

researchers label issues as “good first issue” (GFI), with the goal

of providing newcomers with information about which issues are

easier for people who are new to the complexity of the project [11].

This type of labeling is encouraged by social coding platforms like

GitHub
1
, and practiced by several communities (e.g., LibreOffice

2
,

KDE
3
, and Mozilla

4
).

While those strategies may help transpose the barriers, one ques-

tion remains: are these guidelines and solutions addressing the

problems in the way contributors expect? In this paper, we dive

into this question to find if there are mismatches between maintain-

ers’ and contributors’ perspectives regarding maintainers’ efforts

and contributors’ strategies. Since the resources in projects are

finite, prioritizing the communities’ strategies according to the im-

portance attributed by contributors may be important to optimize

the results, save time, and reduce efforts.

3 METHOD
This section presents the design of our study, which included inter-

views and a survey
5
, as depicted in Fig. 2.

3.1 Stage 1: Interviews - Building the strategies
models

Our research goal was to understand the maintainers’ perspective

on (i) what strategies newcomers use to choose a task to work on;

and (ii) what strategies the community can take to help a newcomer

1

http://bit.ly/NewToOSS

2

https://wiki.documentfoundation.org/Development/EasyHacks

3

https://community.kde.org/KDE/Junior_Jobs

4

https://wiki.mozilla.org/Good_first_bug

5

The research protocol was approved by the institutional review board (IRB) of the

authors’ institution.

http://bit.ly/NewToOSS
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM ’22, September 19–23, 2022, Helsinki, Finland

Figure 1: Previous strategies identified in recent literature
[27] *1 [30] *2 [26] *3 [8] *4 [9] *5 [36] [11–13, 17, 38] *6, [40] *7

Figure 2: Research Method

choose a task. Due to the complexity of the phenomenon under

study, we employed in-depth interviews.

3.1.1 Interviews Planning. We aimed to recruit project maintainers

to talk about task selection while they browsed through their issue

trackers. Therefore, we looked for active projects on GitHub and

with recent pull requests and issues. We went through the list of

popular projects and analyzed the projects’ metadata, including the

description, number of stars, number of forks, closed issues, pull

requests closed, number of contributors, number of commits, and

programming languages. Our goal was to select a set of diverse

projects in terms of languages, sizes, and domains. We selected 87

projects.

Then, we identified the maintainers of these projects by ob-

serving the behavior of approving or rejecting pull requests, the

comments, and the auto-denominated role in their profiles or in

the project repository. We selected 257 maintainers who had public

attract usernames or email addresses publicly available on their

profiles. We invited and interviewed them in random order until

we could not find any new strategy related to our goals for three

consecutive interviews. We offered interviewees a 25-dollar gift

card as a token of appreciation. A consent letter was sent in ad-

vance along with a questionnaire to collect project and interviewee

demographic information.

We conducted two pilot interviews to validate the script and

time-box the interviews, ensuring that their duration would be

ESEM ’22, September 19–23, 2022, Helsinki, FinlandFabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

about 60 minutes. Two researchers evaluated the responses and

made minor adjustments to the instrument. The pilot interviews

were discarded.

Our final sample comprised 17 maintainers in OSS, responsi-

ble for validating changes and performing merges in 26 different

projects. This number is in line with what is foreseen in the lit-

erature as a valid number to unveil the characteristics of a study

domain [2]. Table 1 presents their demographics.

3.1.2 Data Collection. We collected the data using semi-structured

interviews [22]. Three researchers experienced in qualitative studies

conducted the interviews using a videoconferencing tool (15) or

textual chat (2). We used a script (see Table 2) to guide the different

areas of inquiry, while also listening for unanticipated information

during the flow of the conversation.

The interviews revolved around the central question of “how do
newcomers choose an issue, and how can the community help?” We

approached this topic after establishing rapport with the intervie-

wee by asking about their contributions. Then, the researcher asked

the interviewees to open issues from their project and show how

they could be analyzed and what newcomers could do to choose

a task. We used the think-aloud technique while the interviewee

navigated the issue track system. Interviewees reported what strate-

gies contributors should use to choose a task and how to prepare

a project (usually using their own project as an example) to help

newcomers. Despite the pre-planned script, the interviewers took

advantage of the opportunities that emerged during their conduc-

tion, using the principle of flexibility to obtain extra data [22]. A

Table 1: Interview demographics (n=17) P* Prefer not to say

Participant
ID

Years of
Experience Gender 1st

contribution
Team member

since
P1 20 M 2004 2007

P2 8 M 2014 2014

P3 15 M 2016 2017

P4 8 W 2014 2014

P5 8 M 2014 2016

P6 15 M 2006 2018

P7 3 M 2018 2019

P8 10 M 2018 2018

P9 7 M 2016 2016

P10 10 P* 2015 2015

P11 3 M 2018 2020

P12 2 M 2018 2020

P13 7 M 2017 2020

P14 15 M 2005 2017

P15 4 M 2017 2017

P16 20 M 2008 2019

P17 8 W 2016 2020

Table 2: Interview Script (excluding demographic questions)

[RAPPORT]
Q1 - What are the last projects that you contributed/maintained?

Q2 - What are your areas of expertise?

Q3 - In these projects, how did you choose tasks that fit your expertise?

[SKILL TYPES]
Q4 - Look at the issue #XX. Suppose you are a newcomer: How can you choose a

task to contribute?

Can you, please, think aloud so that we know what you are thinking

concluding part of the interview sought to obtain additional infor-

mation and pointers to other potential respondents (snowballing).

Two respondents were recruited using these leads.

With participant consent, we recorded all interviews. The first

author of this paper transcribed the interviews, which lasted be-

tween 45 and 65 minutes. We used Otter.ai and listened to each

recording, adjusting the corresponding transcriptions, mainly re-

garding technical terms and project names.

Our sample comprisedmaintainers across 26 different OSS projects,

including Spark, Apache Cordova, Brain.js, Microsoft PowerToys,

Prisma, Azure Data Studio, ggplot2, Presto, bookdown, Godot En-

gine, Oppia, Jina.ai, Turn, and CASA. Some interviewees maintain

more than one project. These projects vary in terms of the number

of contributors (30 to 1,791 contributors), product domains (includ-

ing infrastructure and user-application projects), and types (backed

by foundations, communities, and companies). Table 1 presents the

demographics of our sample. Because of the terms of consent, we

cannot link each participant to their projects.

3.1.3 Data Analysis. We qualitatively analyzed the transcripts of

the interviews by inductively applying open coding in groups. We

built post-formed codes as the analysis progressed and associated

them with respective parts of the transcribed text. The codes re-

vealed strategies according to the participants’ perspectives, who

were identified as P1 to P17.

After identifying the strategies, we grouped them into a set of

higher-level categories and produced two codebooks, one for new-

comers’ strategies to choose a task and another for the communities’

strategies to help newcomers find a suitable task
6
. Three of the

authors met once a week for three weeks to discuss and validate

the results. The coding process was conducted using continuous

comparison [33] and negotiated agreement [6] as a group. In the

negotiated agreement process, the researchers discussed their ratio-

nale for categorizing each code until they reached a consensus [6].

3.1.4 Member Checking. After analyzing the strategies reported
in the interviews, we conducted member checking to evaluate the

validity of our interpretation and collect additional insights. We

contacted via email the four participants who had agreed to a follow-

up meeting (P2, P4, P14, and P16), sending them an editable visual

representation of the description of each strategy. Participants could

give feedback by email, annotating the visualization directly, or

through an online meeting. Participants P14 and P16 scheduled a

virtual meeting, whereas P2 and P4 gave their feedback over email.

The virtual meetings lasted about 15 minutes. During the call, we

explained the overall definitions of the first level of Fig. 4 and 5,

and asked for suggestions. The email had two questions: What do

you think about this model? Did we correctly place your view in

the model? The four participants (P2, P4, P14, and P16) verified that

the strategies we had generated reflected their views. We identified

some misunderstandings related to some terms and updated our

model to make them clearer.

6

https://doi.org/10.5281/zenodo.6508776

Otter.ai
https://doi.org/10.5281/zenodo.6508776

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM ’22, September 19–23, 2022, Helsinki, Finland

3.2 Stage 2: Survey - Understanding the relative
importance of the strategies

We conducted an online survey to obtain the perspectives of a vari-

ety of developers on the strategies identified during the interview.

3.2.1 Survey Planning. In the survey, we present the newcomers’

strategies for choosing an issue and the strategies that communities

use to help them. We asked respondents to rank the relevance

of each strategy. We also included demographic questions about

experience, age, gender identity, and country of residence.

We advertised the survey on social media and community blogs

(e.g., Linkedin, Twitter, Facebook, and others). We also sent direct

messages to OSS contributors and discussion lists. We offered the

participants a chance to enter a raffle for US$25 gift cards to en-

courage participation.

3.2.2 Data Collection. The survey was available between October

8 and November 2, 2021. We received 209 non-blank responses

and filtered out data to consider only valid responses. We analyzed

the attention check answers, time to complete the questionnaire,

equal/similar e-mail addresses, and inappropriate answers to the

open questions (e.g., “XXX,” “No,” “There is No,” “N”), resulting

in 64 valid responses. We present the demographics of the survey

participants in Fig. 3.

3.2.3 Data Analysis. We used the Schulze method to rank the

strategies and their association with groups from the demographic

data [19, 39].

Schulze Method. The Schulze method [19] is an election method

that computes a single ordered list of preferences (ranking of candi-

dates) from a set of votes, in which each vote represents an ordered

list of preferences on its own. That is, each voter selects all the

candidates that they prefer in order, ranking them, and the Schulze

method aggregates all the rankings into a single winning ranking,

or optionally an ordered list with or without ties. This method

is considered a Condorcet method. Hence, it prioritizes votes for

candidates who win the pairwise comparisons against each candi-

date in every head-to-head election scenario possible. This election

method has been used for elections and decision-making processes

by the Debian project, Ubuntu, Gentoo, the Wikimedia Foundation,

political parties, and others [20]. In our case, we combined the rank-

ings provided by the survey participants to find which strategies

have higher relative importance for each group.

Schulze Setup. The Schulze configuration considers the ordered

preference of the factors each participant selected that define the

relevance of the strategies. In our case, the strategies identified in

the previous interview stage are the factors. We created the ballot

list by aggregating the number of times each ranking order was

chosen. We used the R package “votesys”[4] to compute the list of

the most voted strategies using the Schulze method.

See supplemental material
7
for the questionnaire, codebooks,

and sample answers.

7

https://doi.org/10.5281/zenodo.6508776

4 RESULTS
In this section, we present the results of our investigation grouped

by research question.

4.1 RQ1: What strategies help newcomers
choose a task in OSS?

To answer this research question, we interviewed maintainers to

understand their perspectives on (i) what strategies a newcomer

uses to choose an open issue; and (ii) what strategies the OSS

communities can use to help newcomers choose tasks.

4.1.1 Newcomer strategies to choose a task. From the interviews,

we could identify 27 strategies that maintainers expect newcomers

to use to choose a task and grouped them into five categories, as

presented in Fig. 4. In the following, we present more details about

our findings, organized by strategy category.

Understand the issue. According to the maintainers, newcom-

ers should understand the issues beyond their titles. The specific

strategies under this category are presented in the first column of

Fig. 4. The main focus for newcomers is finding signals to help them

match their skills with appropriate issues. In this sense, reading

through all the issues’ information (title, description, comments)

and checking issue labels, type (bug/feature), and keywords help

newcomers to find meaningful signals relevant to solving the issue

(e.g., class names, method names, component, library, etc.). For

example, one interviewee mentioned that if the newcomers want

to learn if the issue is interesting for them “that can be concluded
from reading the entirety of the proposal and reading the discussion
about it. And then the actual code fix is very simple” (P12).

Communicate with the community. Maintainers mentioned the

importance of communicating with the community as part of the

decision process. A newcomer who does not completely understand

an issue should contact to receive support from the community.

Specific strategies related to it include (i) posing questions to main-

tainers or other contributors and (ii) staying in touch with the

community to learn about the project and project roles. As P10

stated: “usually you can figure out it [...] by talking to other contribu-
tors or peers”.

Understand the context. To choose a task, maintainers highlighted

that it is important for newcomers to know the context of the

problem. Newcomers need to capture details that may help them

to define a solution. To do this, newcomers need to read and have

a high-level understanding of the codebase and the libraries used.

Furthermore, it is suggested that they understand aspects related to

the software architecture, like dependencies and configuration files.

Maintainers also reported that newcomers should attempt to foresee

the scope of the change. If newcomers are not able to understand

the context where the issue is, they will probably change more

code than necessary to solve the issue, increasing the chance of

introducing new bugs: “The point is, you should know what feature
we are working on.” (P13). Fig. 4 (third column) lists the strategies

related to understanding the context.

Set up the environment. To prepare a solution and submit a pull

request, first, the newcomer must identify the appropriate tools to

https://doi.org/10.5281/zenodo.6508776

ESEM ’22, September 19–23, 2022, Helsinki, FinlandFabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

0 10 20 30 40 50 60
Respondents

Projects

Role

Programming
(Years)

OSS
(Years)

Frequency

Age

Gender

Continent

1

38%

Newcomer

27%

0

3%

0

20%

Never contributed

19%

< 21

2%

Woman

19%

North America

72%

2

11%

Frequent

27%

1~3

53%

1~2

48%

Once a year

12%

21~25

27%

Man

80%

South America

17%

3

11%

Maintainer

44%

4~6

27%

3~4

22%

Once a semester

8%

26~30

34%

Prefer not to say

2%

Europe

3%

4

6%

No answer

3%

7~9

6%

5~7

5%

Once a month

20%

31~35

20%

Africa

2%

 5

11%

 10

11%

8~10

3%

Once a week

31%

36~40

9%

Asia

3%

No answer

23%

 11

2%

Once a day

9%

41~45

2%

No answer

3%

 46

2%

Prefer not to say

5%

Figure 3: Personal characteristics of the survey respondents (n=64)

Understand
the issue

Read the issue
(title, description,

comments)
(P1,P8,P12,P16)

Check labels
(P1,P9,P12,P15)

Identify the issue
type (bug, feature)
(P2,P4,P7,P8,P16)

Find and search the
keywords

(P5,P7,P8,P13)

Identify similar
issues (P9)

Figure out what
the bug is (P16)

Communicate with
the community

Ask questions
(P1,P11,P12,

P14,P16)

Participate in
communication

channels
(like mailing list)

(P1,P8,P10)

Understand
the context

Understand what
needs to be done
(P2,P5,P13,P16)

Understand the code
(P4,P5,P8,P11,P12)

Identify the libraries
and dependencies
(P1,P2,P4,P5,P6,
P7,P9,P12,P17)

Understand the
architecture

(P12,P13,P14,P17)

Identify the
configuration files
(P2,P5,P6,P17)

Limit your analysis
to a code region

(P4,P7,P8)

Identify function chain
(P4,P7,P8,P12)

Understand the
application's general

objectives (P14)

Set up the
environment

Read the
documentation
(P7,P12,P17)

Identify the
required tools and
program language

(P1,P2,P3,P4,P5,P15)

Identify the version
(P5,P7)

Run the environment
(P2,P5,P6,P7,P8)

Reproduce the error
(P2,P5,P7,P8,P9,P11)

Understand what
needs to be changed

Identify the
debug tool

(P5,P7)

Debug
(P2,P4,P6,P8,P14)

Evaluate the inputs
(P4,P8,P12)

Change parameters
(P4,P7)

Realize what code
update is needed

(P4, P8)

Check the output
(P7,P8)

Figure 4: How newcomers choose their tasks (according to the maintainers).

build the software locally. “Set up the environment” is a landscape

exploration task since the contribution guidelines documentation

is not always up-to-date or does not comprehend all possible op-

erating systems, library versions, and other details. It is also a

playground to understand configuration files and the project struc-

ture. Contributors need to try to set up the environment to check

their skills before proceeding. In addition, reproducing the error is

part of the process, as P5 witnessed: “looking at the debugger [...]
we can get clues of what’s happening. But for sure, we will want to
reproduce it.” (P5). The fourth column of Fig. 4 shows the strategies

under the Setup environment category.

Understand what needs to be changed. Once the newcomer has set

up the environment and realized the overall architecture and extent

of possible updates that need to be made, it is time to dig deeper

and identify application behavior by changing inputs and verifying

how outputs respond to changes. A debugging tool is really useful

here, because even having a general idea about the context, the

code can often be complicated. When the code is complex, the

contributors must analyze the values of the variables and run the

code step by step, also changing the values of the parameters of the

function. Maintainers claim that once newcomers have a general

understanding of the underlying logic, they will be confident about

the task. “... this exception is happening, because somebody added
this line. Okay, well, what happens if I remove this line? Does it work?
Does something else break? Where is this line used?” (P8).

4.1.2 Community strategies to facilitate task selection. In addition

to the strategies that newcomers are expected to take, we found

40 strategies that the communities take to help newcomers choose

their tasks. From these strategies, we derived seven categories of

strategies, as presented in Fig. 5.

Have good documentation. A way that the community can sup-

port newcomers is by providing appropriate documentation. It

is important, for example, to arrange guidelines that contain the

necessary information to help them understand the contribution

process, standards, and how to contact the community. In addition

to traditional documentation, providing tutorials to cover crucial

aspects related to project architecture and technology is also impor-

tant. Pointing newcomers to good examples to be followed (issues,

commit messages, etc.) is another point. Participant P2 pointed

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM ’22, September 19–23, 2022, Helsinki, Finland

Have good
documentation

Have a
contributor guide
(P1,P2,P3,P4,P6,

P11,P16,P17)

Create tutorials
(P3)

Have a convention
in the code base

(P2,P11,P14)

Provide relevant
links
(P11)

Have good
communication

Create
communication
channels (like
mailing lists)
(P3,P9,P16)

Give feedback
(P1,P13,P15)

Improve
project quality

Modularize
the code
(P3,P6)

Have unit tests
(P14)

Run static analysis
(P1,P2,P15,P17)

Make a code
inventory

(P3)

Create a
management

structure
(P13)

Improve
the process

Create a
contribution

process
(P11,P17)

Explain issue
with details
(P3,P7,P8,

P11,P13,P17)

Organize
the issues

Create templates
(P2,P5,P16)

Link similar issues
(P1,P3,P6,P8,P9,P12)

Split issues
(P1,P2,P9,P14,P16)

Provide the issue's
type (bug/feature)

(P2,P7,P8)

Link issues to
users impacted (P8)

Deduplicate issues
(P1)

Label
the issues

Label with skills
(P3,P11)

Label with
knowledge area

(P13)

Label with
components
(P1,P11,P13)

Label with
programming

languages (P3)

Label with
libraries or APIs

(P13)

Label for triage
(P16)

Label with size
(P13)

Label with
difficulty

(P9)

Label with the
documentation
point related to
the issue (P4)

Label with who
to contact

(P9)

Label with
first steps

(P9)

Label with the
expected outcome

(P9)

Label with context
(P16)

Label with targets
(team, community)

(P16)

Label with
helper text

(P16)

Support the
onboarding of

newcomers

Create a welcome
survey (P9,P11)

Look to the
contributor's

interests (P11)

Create an onboarding
committee (P11,P17)

Create a group of
mentors to work
with newcomers

(P1,P11,P14)

Suggest
contributors/issues

(P1,P9,P11,P14,P17)

Figure 5: Community strategies to help newcomers finding a suitable issue.

out that “the minimum entry-level is just a knowledge of software
engineering. Python in this case, and then just following the tutorial,
so some patience basically to understand the documentation and so
on” (P2).

Have good communication. This strategy is fundamental to mak-

ing newcomers feel welcome and comfortable discussing problems

not covered by the documentation. Having channels specific for on-

boarding questions and asking for help when starting is something

that communities may put in place. One of our interviewees con-

firmed the importance of the community showing good/appropriate

communication skills: “I see a lot on GitHub, big, big projects with
tons of issues. And they take a lot of time to react to comments... And
I think that this engages a lot. I think that you have to give time for
people to figure it out. But keeping them weeks or months without an
answer usually would be too much” (P13).

Improve project quality. Quality improvement aims to find easier

ways to fix and evolve the code. One strategy that helps is by having

the code organized clearly and explicitly in a modular way. This is

mentioned by P3, who said: “That is yet convenient here: the code
of <software name> is structured by module, and each module has
a folder.” This facilitates, among other things, locating the pieces

of code related to specific issues and features. Keeping the code

covered with unit tests and providing static analysis tools make it

convenient for newcomers to understand if their code is following

the standards.

Improve the process. Improving the process was mentioned by

participants both in terms of (i) creating a contribution process so

newcomers can “learn where they can contribute” (P1) by “going
through the official onboarding process” (P11). At a more granular

level, the process of creating a task should guarantee that the pro-

ponent is going to (ii) explain the issue with details because “if the
domain knowledge is missing, it is a lot harder for someone to join in”
(P3). Besides explaining the issue, details can also include previous

solution attempts and results, so a contributor is aware of previous

strives and avoids rework (P8).

Organize the issues. Issue organization benefits the newcomers

and the overall team by helping the project prioritize and allocate

the right resources to the right issues. Regarding the issue itself, (i)

creating a template help to standardize details and guide the author

of an issue to fill the expected data (P16). The template can include

(ii) a link to similar issues, which is a detail that can “inspire the
contributor” (P9) on how to solve the issue. The strategy to (iii)

split issues avoids driving newcomers away due to complexity. The

issue can have smaller sub-issues that can be taken by new people,
and subsequently added everything, so that we can close the issue
in the end (P9). When it comes to the issue tracker, (iv) providing

the issue’s type that could be used on a filter helps newcomers

to reduce the number of choices from a long list if they would

prefer to work on a specific type of issue (e.g., feature request or

backtrack) (P7). Not only the type but knowing the (v) impacted

users can entice newcomers to pick a task by “knowing how many
people are facing this issue”. Although requiring a manual effort, (vi)

deduplicate issues (P1) is a strategy to avoid rework by having more

than one issue to the same task.

Label the issues. Labeling could be part of the issue organiza-

tion due to its straight relationship. In fact, labels can be a way

to provide the issue’s type, indicating whether they represent bug

reports, feature requests, or other types of tasks. However, due to

the great number of ways of labeling identified by the interviewers,

we decided to create a category for the labels’ strategies. Our par-

ticipants mentioned they would like to have labels with “specific
skills would be required to solve the issue” (P11), for example, “skill:
documentation‘ or skill: ruby” (P3). Regarding the technical skills,
participants brought out the need to have labels with knowledge

area (P13), components (P1, P11, P13), programming language (P3),

and libraries or APIs (P13).

The status of the issue can be part of a label that shows if an issue

is still in triage or even under ongoing work by another contributor

(P16)—in that case, a newcomer can decide to join and collaborate.

Both size (P13) and difficulty level (P9) were mentioned in terms of

effort and complexity. As for assistance in understanding the issue,

P4 recommended having a label to the point of documentation

related to the issue, so newcomers can have a better picture of the

piece of software they will deal with. In case of questions, when

having “labels regarding who to contact if you need help with that
issue?” (P9), a newcomer can feel safe having someone to contact

with. When coming to action, a label with first steps and expected

outcomes (P9) can also be a helping hand to newcomers on the

pathway to solving the issue. P16 points to the necessity of labeling

the issues with the context of the project and indicating not only

ESEM ’22, September 19–23, 2022, Helsinki, FinlandFabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

the target (“if you don’t have context, you don’t need to know what
accessibility end is. But my team needs to know what that means.”),
but also including helper texts that describe the labels.

Support the onboarding of newcomers. Supporting the onboard-
ing can include identifying the newcomers’ characteristics and

potential. It can be done with a survey identifying their skills and

interests. An onboarding committee in charge of the integration

may define the policies and goals. Knowing the newcomers’ po-

tential and interests, the community can recommend a mentor “to
make it easy for a certain person to contribute more” (P1). The mentor

may indicate some easy tasks as “first issues which will help [the
newcomer] to get familiarized with the code base” (P11).

4.2 RQ2: How do newcomers and existing
contributors differ in their opinions of
which strategies are important for
newcomers?

To compare the relative importance of the strategies from the point

of view of different stakeholders, we used the Schulze method [19]

to combine the rankings for (i) newcomers and (ii) community

strategies. In the following subsections, we present the rankings

and how they compare.

4.2.1 Mismatches in newcomers’ strategies. Figure 6 presents the
ranking of the preferences from the three groups: newcomers, fre-

quent contributors, and maintainers. The numbers in the figure

represent the position of each strategy in the combined ranking (it

is possible to have ties).

Regarding strategies that newcomers are expected to use to

choose a task, frequent contributors and maintainers had very

similar values. However, while the Schulze method found a clear se-

quence of importance for frequent contributors, two ties occurred

for maintainers: “Set up the environment” and “Understand the

issue” tied in the first position; and “Communicate with the com-

munity” and “Understand the context” tied in the last position.

Newcomers also had similar rankings. However, they value “Set

up the environment” more than “Understand what needs to be

changed”. The former appears in the first position, while the latter—

which appears in the first position for frequent contributors and

maintainers—appears in the third position for newcomers. Finally,

the “Communicate with the community” was ranked in the penul-

timate position by all groups.

1

2

3

4

5

1

2

3

4

5

1 Understand the issue

1 Set up the environment

3 Understand the change

4 Communicate with community

4 Understand the context

Newcomers Frequent Maintainers

Figure 6: The relative importance of newcomer strategies

4.2.2 Mismatches in maintainers’ strategies. Fig. 7 presents the

combined rankings for maintainers’ strategies, according to each

stakeholder. Once again, the perspective of frequent contributors

and maintainers are similar, with one standout difference: “Support

the onboarding of newcomers”.

The “Improve project quality” strategy was ranked as the top-

ranked strategy for frequent contributors and maintainers. We

have almost an agreement since newcomers ranked it in second

place. The most important strategy according to the newcomers

was “have good documentation”, which is also tied as the second

most important strategy for frequent contributors and maintainers.

Newcomers and frequent contributors agree that “Label the issues”

is the least important strategy. Maintainers also agree with its low

importance, ranking it in the sixth position.

We also found some mismatches. For newcomers, “good com-

munication” is only the fifth strategy contrasting with the second

place for maintainers (tied with “good documentation”) and the

fourth for frequent contributors. Another mismatch regards the

category “improve the process.” It was ranked third according to

newcomers, but its ranking dropped significantly for frequent con-

tributors and maintainers (sixth and fifth, respectively). Still, for

“Support the onboarding of newcomers,” while it was ranked last

for the maintainers, it was the third for newcomers and second for

frequent contributors. This is surprising since the intuition we had

was that maintainers should prioritize the onboarding process to

count on human resources to work on the issues.

1

2

3

3

5

5

7

1

2

2

4

5

6

7

1 Improve project quality

2 Good documentation

2 Good communication

4 Organize the issues

5 Improve the process

6 Label the issues

7 Onboarding of newcomers

Newcomers Frequent Maintainers

Figure 7: The relative importance of community strategies

5 DISCUSSION
Why does the convergence of relative importance matter?
An OSS project is a challenging environment composed of diverse

team members with a variety of experience levels and informal rela-

tions [24]. Within a dynamic organization, it is difficult to identify

the competencies of each member, as people have different styles of

development, are physically distant, and lack a structured working

relationship [24]. In this environment, knowing the community’s

interests and concerns and managing to converge them can help

better manage the project. For example, Steinmacher et al. [26]

report difficulties mentors face in assisting newcomers. Lack of

information from maintainers about newcomers denies assistance

and makes the prioritization of the onboarding process harder.

In our results, we found a high convergence between frequent

contributors and maintainers, both in terms of which strategies

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM ’22, September 19–23, 2022, Helsinki, Finland

newcomers use to choose a task and strategies communities can

use to support newcomers in choosing a task. However, newcomers

have different interests and concerns. This discrepancy between

perspectives might create a gulf of expectations and misunderstand-

ings, making newcomers struggle, and maintainers mismanage the

project with ineffective strategies.

Maintainers and contributors fight the same battles from
different perspectives. Although contributing to a project is an

overarching goal shared by everyone, maintainers and newcomers

have different objectives. Maintainers are concerned with keeping

the project running smoothly, attending to their customers, and

managing the workload. On the other hand, newcomers may be

looking for the benefits of the contribution to their career or the

project directly. Thus, easy access to technical tips through docu-

mentation and project quality verification plays a special role when

looking for a task to start with.

A recent study about the shifts in motivation [7] confirms the di-

versity of reasons that newcomers join and senior developers keep

contributing. The first group wants to learn and aims to improve

the career (indeed, the learning process may leverage the career–

extrinsic motivation [7]). Therefore they are thirsty for projects

with good documentation, whereas the experienced contributors

want quality over documentation and good communication chan-

nels to ask questions. They aim for altruism or ideology (intrinsic

motivations) [7]. Since regular contributors believe the onboarding

process is a priority, altruism might direct them to help newcomers.

A study for the Linux Kernel OSS project [41] shows the number

of files and commits particularly grows in some modules, while the

flow of joiners is stable or even drops. Also, the maintainers’ effort

increased with author churn [41]. This is particularly observed

in many OSS projects. As they cannot count on more newcomers

and face team churn, investing time in documentation and quality

seems to be aligned with our results.

Maintainers have a deep knowledge of their projects and the

ideology they implement. Therefore, the main important task is

to improve the project quality and understand the issue’s content.

As high-ranked officers, they know the battlefield. On the other

hand, rookies carefully assess the environment before engaging in

a project. Therefore, the ability to set up the environment is crucial

to the first contribution.

The work of den Besten et al. [5] shows evidence that open-

source project allocation is influenced by code characteristics and

complexity. One may be able to assess the skills and the complexity

level of a task by looking into the documentation, figuring out how

to set up the environment, and identifying the complexity of the

change. Newcomers like to start with a specific kind of problem,

involving a less complex, contained, and low workload [34]. Sarma

et al. [18] proposed BugExchange: a tool to help newcomers find a

task while pointing to related documentation, recommend issues,

and communicate with near-peer mentors. The idea behind the tool

is to create a learning environment and to aid newcomers to climb

the issues’ complexity step by step.

As contributors mature and become frequent contributors, they

navigate project issues and find the resources they need. In fact,

the results showed a decrease in the priority of the "set up the

environment" strategy.

Multi-teamingneeds documentation and collaboration sup-
port. OSS projects usually are multi-teaming (i.e., projects whose

members work on multiple projects simultaneously). Therefore,

multi-teaming and OSS research have a common ground. Multi-

teaming research corroborates the idea brought by OSS communi-

ties. The plurality of members may leverage the knowledge inside

the project, but, on the other hand, it can hamper coordination and

fragment the team’s attention [10]. A proposed solution for multi-

teaming is the use of information systems to support collaboration

and a central repository (i.e., platforms like GitHub) for knowledge

modeling or specific tools like the dashboard proposed by Guizani

et al. [9]. The information systems may be seen as a document

repository and a collaboration platform to assist team members in

addressing the shared cognition problem by enabling information

flow [10]. Since newcomers seek knowledge and tasks to which

to contribute, it meets our findings for good documentation and a

quality project. Maintainers, as project managers, must be aware

of contributors’ needs and prepare the project’s repository to meet

contributors’ expectations. Our findings suggest that maintainers

should invest in well-written documentation, a communication

channel for the team, and project quality improvement.

Leveraging related research is perhaps a good way to avoid rein-

venting the wheel. Multi-teaming research may borrow ideas to

address the team management encompassing strategies to integrate

newcomers, manage the quality, and prepare the project to use a

contribution process suitable to dynamic teams with high churn vol-

ume, difficulties of communications, flexible hierarchy, and diverse

levels of members commitment [10].

The paradox of choice. This paradox emphasizes the greater

the number of options we have, the less satisfaction we will derive

from our decisions [21]. When newcomers open an issue tracker

list and encounter many open issues, they can struggle to find

the most suitable task to contribute to and often give up. When

people do not have a strategy to elect viable choices, a decision

can become overwhelmed by the options, reducing the likelihood

of making a good choice and leading to frustration [21]. Strategic

thinking involves planning and thinking. Planning includes analysis

and procedures, whereas thinking involves synthesis—encouraging

intuitive, innovative, and creative thinking [32]. While the list of

issues will continue to exist and, in many cases, as a long list,

our results suggest strategic thinking to help a newcomer when

choosing a task to contribute. We provide suggestions for both

the newcomer (Section 4.1.1) and the community (Section 4.1.2) to

mitigate the paradox of choice in the issue tracker list.

Strategies used in practice or suggested by maintainers
are not well-documented in the literature. Despite the recent
literature covering several of the strategies that maintainers can

use to support newcomers, we are surprised that after many papers

about the topic, we still found other strategies. For example, as pre-

sented in related work (Section 2), GitHub projects employ many

labeling strategies, such as “Label with Components”.
8
However,

we found other approaches. For example, labels for knowledge area,

expected outcome, and context were proposed by our interviewees.

We also found some new strategies to address the organization

of the issues. For example, it would be interesting to link the issues

8

https://github.com/JabRef/jabref

https://github.com/JabRef/jabref

ESEM ’22, September 19–23, 2022, Helsinki, FinlandFabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

with stakeholders whowould benefit or be impacted (not developers

working on it). This would be valuable since the business unit or

customers interested in the solution of the issue would be explicit.

The importance of the newcomers’ strategy “Setup the environ-

ment” is probably due to the increasing complexity of recent appli-

cations and the plurality of the configurations. Since OSS projects

are not contained in a single company, configuration management

(CM) is hard to pursue, creating additional challenges for this strat-

egy [15]. Future work can address specific strategies to handle this

complexity, focusing on CM for newcomers.

While the strategies proposed in the literature barely tackle

which strategies newcomers should use to communicate with the

community, some communities’ strategies may help to increase the

confidence of newcomers, such as acting with kindness and putting

effort to help newcomers feel part of the team and not afraid of the

community [30].

6 THREATS TO VALIDITY
There are some limitations related to our research results.

Generalizability. One can argue that a majority of our inter-

viewees identified as men. Although it is a similar distribution to

typical OSS gender demographics [3, 23, 35], we could have found

new insights with a more diverse distribution of gender. The strate-

gies uncovered in our study are not meant to be exhaustive, and

further research into different types of projects will likely uncover

other strategies. Furthermore, we acknowledge that our sample

may be biased in unknown ways, and our results are only valid for

our respondents. Additionally, the results presented in this paper

are related to Open Source communities. Thus, we do not expect

that the strategies found in our study will be directly applicable to

other software domains. Nevertheless, to allow replication of our

study, we carefully describe our research method steps.

Replicability in qualitative research is hard, since human be-

haviors, feelings, and perceptions change over time. Merriam [14]

suggests checking the consistency of the results and inferences.

Consistency refers to ensuring that the results consistently fol-

low the data and the data analysis can support all inferences. To

increase consistency, we performed data analysis in pairs, which

was consistently revised by two experienced researchers. We held

weekly meetings to discuss and adjust codes and categories until we

reached an agreement. We also performed member checking with

four participants, who confirmed our interpretation with minor

changes. Moreover, we provide the codebook for traceability and

increase comprehensibility and repeatability.

Theoretical saturation. A potential limitation in qualitative

studies is not reaching theoretical saturation. The quality, rather

than the size, of the sample of participants is essential to increase

our confidence in the results. In this study, we interviewed 17 par-

ticipants with different perspectives and perceptions about the

studied phenomenon. Our participants were diverse in terms of the

number of years with OSS and roles. Further, these participants

represent 26 different OSS projects of different sizes. The number

of projects is higher than the number of interviewees, as some of

them contribute to more than one project in parallel. The number of

interviewed participants was adequate to uncover and understand

the core categories in a all-defined cultural domain or study of lived

experience [2]. While we cannot claim saturation, our population

has helped us uncover a consistent and comprehensive account of

the strategies.

Inappropriate participation. As described in Section 3.2.2, we

employed several filtering and inspecting strategies to reduce the

possibility of fake data; however, it is not possible to claim that

our data is completely free of this threat. From the 12 answers

indicating no previous contributions only two respondents had no

coding experience but have informed projects they work (possible

as non-coder). Since non-coder contributions are also valuable, we

decided to include these answers. Some participants did not answer

the name/number of the projects they contributed as it was not

a mandatory answer. To verify the commitment and experience

we relied on the questions: How frequently do you contribute to

OSS projects? How many years contributing to OSS projects? How

many years of programming experience do you have?

7 CONCLUSION
We interviewed maintainers from diverse OSS projects and iden-

tified 27 strategies (grouped in five categories) that a newcomer

uses to choose a task, and 40 strategies (grouped in seven cate-

gories) communities employ to help the newcomers. Following, we

surveyed maintainers, newcomers, and frequent contributors to

rank the newcomers’ and maintainers’ strategies. Using a Schulze

method, we ranked the relative importance of the strategies to elu-

cidate which ones are seen as more relevant for contributors in

different roles (newcomers, frequent contributors, and maintainers),

highlighting how they diverge. We found maintainers and new-

comers diverge about the importance of the process of onboarding,

the improvement of the contribution process, and the team com-

munication. Overall, stakeholders agreed on the priority of project

quality, good documentation, correctly reading and understanding

the problem, and identifying what changes needs to be made.

Prior works proposed several guidelines, mitigation strategies,

and processes to overcome the initial barrier faced by the newcom-

ers. Our ranking might be used to prioritize the management effort

in OSS projects or support aid goals to improve the onboarding pro-

cess. Strategies that converge in serving the various stakeholders

can decrease existing gaps in perspectives, therefore, obviating the

problem of the expectation gulf.

Future work should reach maintainers to receive feedback about

how communities can adopt the strategies and how to automate

them. Additional research may also propose ways to improve pro-

ductivity in OSS communities by analyzing multi-team research

that possibly shares problems with OSS projects like team churn

and poor team coordination. Reusing mature strategies to create

robust contribution processes, collaborations, and support the in-

tegration of new team members seem to have liaison with the

challenges faced by the OSS communities. Additional research can

also uncover the sequence and prerequisites of the strategies. Fi-

nally, another interesting future work would be handling the choice

paradox by suggesting a step-by-step project-customized process

to be followed by newcomers to track progress and avoid getting

lost in selecting an issue.

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM ’22, September 19–23, 2022, Helsinki, Finland

ACKNOWLEDGMENTS
This work is partially supported by the National Science Founda-

tion under Grant numbers 1815486, 1815503, 1900903, and 1901031,

CNPq grant #313067/2020-1. We also thank the participants who

spent their time answering our interviews and survey.

This work is partially supported by CNPq/MCTI/FNDCT (grant

#408812/2021-4) and MCTIC/CGI/FAPESP (grant #2021/06662-1).

REFERENCES
[1] Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,

Marco A Gerosa, Igor Steinmacher, and Anita Sarma. 2020. Recommending tasks

to newcomers in oss projects: How do mentors handle it?. In Proceedings of the
16th International Symposium on Open Collaboration. ACM, Virtual Conference,

Spain, 1–14.

[2] H Russell Bernard. 2017. Research methods in anthropology: Qualitative and
quantitative approaches. Rowman & Littlefield, Washington, DC.

[3] Bitergia. 2016. Gender-diversity Analysis of the Linux kernel Technical Con-

tributions. Accessed: 2020-10-16. https://blog.bitergia.com/2016/10/11/gender-

diversity-analysis-of-the-linux-kernel-technical-contributions.

[4] CRAN. 2018. CRAN Repository Policy. https://cran.r-project.org/web/packages/

votesys/index.html

[5] Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia. 2008. The allocation of

collaborative efforts in open-source software. Information Economics and Policy
20, 4 (2008), 316–322.

[6] D Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kappelman.

2006. Revisiting methodological issues in transcript analysis: Negotiated coding

and reliability. The Internet and Higher Education 9, 1 (2006), 1–8.

[7] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Robles,

Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The shifting sands of

motivation: Revisiting what drives contributors in open source. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, IEEE, Madrid,

Spain, 1046–1058.

[8] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May,

Geraldine J Noa-Guevara, Liam James Russell, Griselda G Cuevas Zambrano,

Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A Gerosa, et al. 2021. The

Long Road Ahead: Ongoing Challenges in Contributing to Large OSS Organiza-

tions and What to Do. Proceedings of the ACM on Human-Computer Interaction 5,

CSCW2 (2021), 1–30.

[9] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022.

Attracting and Retaining OSS Contributors with a Maintainer Dashboard. CoRR
abs/2202.07740 (2022), 5.

[10] Pranav Gupta and Anita Williams Woolley. 2018. Productivity in an era of

multi-teaming: The role of information dashboards and shared cognition in team

performance. Proceedings of the ACM on Human-Computer Interaction 2, CSCW

(2018), 1–18.

[11] Yuekai Huang, Junjie Wang, SongWang, Zhe Liu, DandanWang, and Qing Wang.

2021. Characterizing and Predicting Good First Issues. In Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). ACM, Bari, Italy, 1–12.

[12] Maliheh Izadi, Kiana Akbari, and Abbas Heydarnoori. 2022. Predicting the

objective and priority of issue reports in software repositories. Empirical Software
Engineering 27, 2 (2022), 1–37.

[13] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.

2019. Ticket tagger: Machine learning driven issue classification. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
IEEE, Cleveland, USA, 406–409.

[14] Sharan B Merriam and Elizabeth J Tisdell. 2015. Qualitative research: A guide to
design and implementation. John Wiley & Sons, Chichester, England.

[15] Stefan Meyer, Philip Healy, Theo Lynn, and John Morrison. 2013. Quality assur-

ance for open source software configuration management. In 2013 15th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing.
IEEE, IEEE Computer Society, Timisoara, Romania, 454–461.

[16] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schnei-

der. 2013. Creating a shared understanding of testing culture on a social coding

site. In 2013 35th International Conference on Software Engineering (ICSE). IEEE,
IEEE Computer Society, San Francisco, USA, 112–121.

[17] Fabio Santos, Igor Wiese, Bianca Trinkenreich, Igor Steinmacher, Anita Sarma,

and Marco A Gerosa. 2021. Can I Solve It? Identifying APIs Required to Complete

OSS Tasks. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, IEEE, Madrid, Spain, 346–257.

[18] Anita Sarma, Marco Aurélio Gerosa, Igor Steinmacher, and Rafael Leano. 2016.

Training the future workforce through task curation in an OSS ecosystem. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, Seattle, USA, 932–935.

[19] Markus Schulze. 2003. A new monotonic and clone-independent single-winner

election method. Voting matters 17, 1 (2003), 9–19.
[20] Markus Schulze. 2011. A new monotonic, clone-independent, reversal symmet-

ric, and condorcet-consistent single-winner election method. Social choice and
Welfare 36, 2 (2011), 267–303.

[21] Barry Schwartz. 2004. The paradox of choice: Why more is less. HarperPerennial,
New York, NY.

[22] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software

engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[23] F. Sharan. 2016. ASF Committer Diversity Survey. Accessed: 2020-10-

16. https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+

Diversity+Survey+-+2016.

[24] Marissa L Shuffler and Matthew A Cronin. 2019. The challenges of working with

“real” teams: Challenges, needs, and opportunities. , 211–218 pages.

[25] Christoph Stanik, Lloyd Montgomery, Daniel Martens, Davide Fucci, and Walid

Maalej. 2018. A Simple NLP-based Approach to Support Onboarding and Re-

tention in Open Source Communities. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, IEEE Computer Society,

Madrid, Spain, 172–182.

[26] Igor Steinmacher, Sogol Balali, Bianca Trinkenreich, Mariam Guizani, Daniel

Izquierdo-Cortazar, Griselda G Cuevas Zambrano, Marco Aurelio Gerosa, and

Anita Sarma. 2021. Being a Mentor in open source projects. Journal of Internet
Services and Applications 12, 1 (2021), 1–33.

[27] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.

2015. Social Barriers Faced by Newcomers Placing Their First Contribution

in Open Source Software Projects. In Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing. ACM, Vancouver,

Canada, 1379–1392.

[28] Igor Steinmacher, Tayana Uchôa Conte, and Marco Aurélio Gerosa. 2015. Under-

standing and supporting the choice of an appropriate task to start with in open

source software communities. In 2015 48th Hawaii International Conference on
System Sciences. IEEE, IEEE Computer Society, Kauai, USA, 5299–5308.

[29] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and

David F Redmiles. 2015. A systematic literature review on the barriers faced by

newcomers to open source software projects. Information and Software Technology
59 (2015), 67–85.

[30] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:

Guidelines for the successful onboarding of newcomers to open source projects.

IEEE Software 36, 4 (2018), 41–49.
[31] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio Gerosa.

2013. Why do newcomers abandon open source software projects?. In 2013 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, IEEE Computer Society, San Francisco, USA, 25–32.

[32] Gail Steptoe-Warren, Douglas Howat, and Ian Hume. 2011. Strategic thinking

and decision making: literature review. Journal of Strategy and Management 4, 3
(2011), 238–250.

[33] Anselm Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research :
Techniques and Procedures for Developing Grounded Theory (3rd ed.). SAGE

Publications, Thousand Oaks, USA.

[34] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues

on github. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, Virtual Event, USA, 398–409.

[35] Bianca Trinkenreich, Igor Wiese, Anita Sarma, Marco Gerosa, and Igor Stein-

macher. 2022. Women’s Participation in Open Source Software: A Survey of

the Literature. Transactions on Software Engineering and Methodology (TOSEM)
(2022), 35. https://doi.org/10.1145/3510460

[36] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.

Adding sparkle to social coding: an empirical study of repository badges in the

npm ecosystem. In Proceedings of the 40th International Conference on Software
Engineering. ACM, Gothenburg, Sweden, 511–522.

[37] Jianguo Wang and Anita Sarma. 2011. Which bug should I fix: helping new

developers onboard a new project. In Proceedings of the 4th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering. ACM, ACM, Waikiki,

Honolulu, USA, 76–79.

[38] Jun Wang, Xiaofang Zhang, and Lin Chen. 2021. How well do pre-trained contex-

tual language representations recommend labels for GitHub issues? Knowledge-
Based Systems 232 (2021), 107476. https://doi.org/10.1016/j.knosys.2021.107476

[39] Claes Wohlin and Aybüke Aurum. 2015. Towards a decision-making structure for

selecting a research design in empirical software engineering. Empirical Software
Engineering 20, 6 (2015), 1427–1455.

[40] Yang Zhang, Yiwen Wu, Tao Wang, and Huaimin Wang. 2020. iLinker: a novel

approach for issue knowledge acquisition in GitHub projects. World Wide Web
23, 3 (2020), 1589–1619.

[41] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017. On

the scalability of Linux kernel maintainers’ work. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, Paderborn, Germany,

27–37.

https://blog.bitergia.com/2016/10/11/gender-diversity-analysis-of-the-linux-kernel-technical-contributions
https://blog.bitergia.com/2016/10/11/gender-diversity-analysis-of-the-linux-kernel-technical-contributions
https://cran.r-project.org/web/packages/votesys/index.html
https://cran.r-project.org/web/packages/votesys/index.html
https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://doi.org/10.1145/3510460
https://doi.org/10.1016/j.knosys.2021.107476

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Stage 1: Interviews - Building the strategies models
	3.2 Stage 2: Survey - Understanding the relative importance of the strategies

	4 Results
	4.1 RQ1: What strategies help newcomers choose a task in OSS?
	4.2 RQ2: How do newcomers and existing contributors differ in their opinions of which strategies are important for newcomers?

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

