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Abstract

A well-known way to help newcomers overcome initial contribution challenges is
mentoring. This strategy has proven effective in offline and online communities,
and to some extent has been employed in Open Source Software (OSS) projects.
Through mentoring, newcomers are trained to acquire the technical, social, and
organizational skills they need. Despite the importance of OSS mentors, they are
under studied in the literature. Understanding who mentors in OSS projects are,
the challenges they face, and the strategies they use can help OSS projects better
understand and support mentors’ work. In this paper, we investigate the OSS
mentors’ perspectives by employing a two-stage study. First, we understand the
characteristics of the mentors in a large OSS community through a large-scale
online survey in the Apache Software Foundation. We found that contributors
who are volunteers and less experienced are less likely to take on the role of
mentoring. Second, we identify the challenges that mentors face and how they
mitigate these challenges through interviews with OSS mentors (n=18). In total,
we identified 25 general mentorship challenges and 7 sub-categories of challenges
regarding task recommendation. We also identified 13 strategies to overcome
these challenges. Our results provide insights for OSS communities, formal
mentorship programs like Outreachy, and tool builders who design automated
support for task assignment and internship.

Keywords: OSS; mentors; onboarding; challenges; task recommendation;
software engineering

1 Introduction
A variety of Open Source Software (OSS) projects strive to become open collabora-

tion communities with low entry barriers by facilitating the onboarding of newcom-

ers [30, 79]. However, previous work shows that newcomers to OSS communities

face a large number of barriers [81, 82].

Mentorship is a frequently-adopted strategy to help newcomers overcome the bar-

riers they face in their first steps to contributions [24, 38, 50]. In offline commu-

nities, assigning mentors to new members has proven effective at helping them

overcome challenges [22]. OSS communities also offer mentoring initiatives for new-

comers [24, 73, 81], including well-known and established programs like Google

Summer of Code [74]. Through mentoring, newcomers are trained to acquire the

technical, social, and organizational skills they need [24, 44, 50, 56]. In this context,

a mentor is a peer who was assigned to or who volunteered to support newcomers

onboarding a project. Mentors are usually peers who succeeded in overcoming the

project challenges themselves and are willing to help others onboard [49].

Past work has focused on developing strategies to automatically recommend men-

tors [15, 47, 56, 77] and to assess the impact of mentoring [24, 44, 70]. In our previous
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work [4], we found that typically OSS mentors are neither formally trained nor paid

for such work. Without any formal training, mentors–even if they are technically

resourceful–are not aware of the challenges involved in mentoring, especially in get-

ting a newcomer started on their tasks. Identifying a starter tasks that is not too

complex, yet challenging to motivate the newcomer and that matches their experi-

ence is nontrivial [77].

In this paper, we extend our previous works [4, 5] by investigating the characteris-

tics of mentors in a large OSS organization and by providing a comprehensive view

of the challenges they face and the strategies they employ. Scientifically identifying

challenges and strategies that mentors adopt to support newcomers can help OSS

communities, mentors, and researchers create better tools and processes to support

mentors. Therefore, we aim to answer the following research questions.

RQ1. What are the characteristics of OSS mentors?

RQ2. What are the mentorship challenges that mentors face?

RQ3. What are the specific challenges and strategies for recommending tasks

to newcomers?

To achieve our goal, we employed a survey (n=624) with contributors to the

Apache Software Foundation (ASF), one of the largest open source communities.

Second, we interviewed 18 mentors from a diverse set of projects to uncover chal-

lenges that mentors face and the strategies they employ to mitigate those challenges.

In summary, this paper contributes to the literature by: (a) characterizing the con-

tributors who play a mentorship role, (b) describing 25 challenges mentors face, (c)

investigating further the challenges they face when recommending tasks to new-

comers, and (d) identifying strategies that mentors employ. Our results inform

the broader OSS community on how to better support mentors and tool builders

through specific strategies that can used to support task recommendation.

2 Method
To answer our research questions, we designed a study that comprised two stages.

Stage 1 provides an understanding of the characteristics of mentors in a large or-

ganization (RQ1), while Stage 2 investigates mentorship challenges and strategies

from the point of view of the mentors (RQ2 & RQ3). Figure 1 depicts the overview

of the two stages in our research method, which we discuss next.

For Stage 1, we employed a survey in collaboration with the Apache Software

Foundation (ASF). Focusing on a single organization to answer RQ1 helped us in

multiple ways. First, it allowed us to better define our population in the context of

a single organization and compare and contrast characteristics of mentor with non-

mentors. Second, our partnership with the Apache Software Foundation allowed us

to reach a large number of respondents (624) across multiple projects. Such a large

survey allowed us to obtain data about 175 mentors. Prior to this large-scale survey,

we tried to reach a large number of mentors, but it was difficult since their role is

often not formally defined. Third, the ASF serves as a relevant case study as it is

one of the world’s largest OSS foundation with more than 460,000 people involved,

with more than 350 projects and initiatives and partners with mentorship programs

such as Outreachy and Google Summer of Code. Finally, Apache projects are often



Steinmacher et al. Page 3 of 30

Survey  
(both Mentors 

and non-Mentors)

St
ag

e 
1

Resulting 
Characteristics 

of Mentors (RQ1)

Analysis of 
survey data

St
ag

e 
2

Semi-Structured
 Interviews with Mentors

Qualitative 
Analysis

Discussion / 
Agreement

Resulting
Challenges 

and Strategies 
(RQ2 and RQ3)

Figure 1 Research Method Overview

studied in scientific research, which allows our work to be placed in the context of

existing research [16, 17, 35, 41, 54].

For Stage 2, we conducted in-depth interviews with mentors. For this stage, we

interviewed mentors from the ASF and also included mentors from several other

OSS communities to provide a broad view of the mentors’ challenges and strategies.

2.1 Stage 1 - Study Planning

We defined the survey’s target population as any contributor in the community

to be able to compare mentors with non-mentors. The survey comprised 25 ques-

tions, including demographic questions; their initial and current roles; how often

the respondents contribute to the projects; Compensation (paid/unpaid); English

proficiency; and if the respondents had a mentor when they started. All the ques-

tions were optional to increase the response rate [61]. The survey design was in

collaboration with the ASF and underwent several iterations with feedback from

the D&I committee of the ASF. The survey was sandboxed with the research team

and piloted with the D&I committee members.

The recruitment was based on sending 7010 direct e-mails to the community’s

committers, D&I lists, and posting in social networks. The survey was available be-

tween January 1 and February 24, 2020. We received 624 survey responses resulting

in a response rate of 8.5%, considering the total community size of 7,500 committers

in the ASF.

2.2 Stage 1 - Data Analysis

To characterize mentors, we used the survey question about how often the con-

tributor performed mentorship activities. This question had four possible answers:

Never, Rarely (less than once a month), Sometimes (more than once a month), and

Often (once a week or more). From the 624 respondents, 65 did not answer this

questions. We considered a respondent as a mentor if the options “Sometimes” or



Steinmacher et al. Page 4 of 30

“Often” were marked, and not a mentor if the options “Never” or “Rarely” were

marked. Using this filter, we found 175 mentors and 384 non-mentors.

Figure 2 Demographics of Survey Participants who were mentors (top row) and those who are
not mentors (bottom row).

Figure 2 presents the demographics of the mentors and the non-mentors. When

considering mentors, a large majority were men (92.7%), experienced in the ASF

(only 12.2% have less than 1 year experience), and had some component of their

work paid (62.9% when combining those fully and partially paid). There are only

slight differences in the demographics of the non mentors. Non mentors included

95.5% of contributors who were men and had similar distribution of work experience

and compensation structure.

We used regression modeling techniques to identify demographics that positively

or negatively influence the likelihood of a contributor being a mentor. Table 1

presents the different values of the dependent variables we use.

Table 1 The categorical dependent variables, respective levels and possible values they could assume

Dependent
Variables

Compensation Experience
Had

Mentor
Age Gender Education

Possible
Values

Paid <1 year Yes <25 years woman
No formal
education

Unpaid 1-2 years No 25-34 man
High

school
Mix of Paid
and Unpaid

3-5 years 35-44
non

binary
Technical
training

6-10 years 45-54
prefer
to self

describe

Under
graduate

>10 years 55-64
Master’s
degree

>65 years Ph.D.

To check for collinearity among the explanatory variables in the regression mod-

els, we first checked for Variable Inflation Factors (VIF). A recommended practice

is to remove any variables in the final model that have VIF scores > 5 [31]. Based

on the VIF scores, we selected the following variables to be part of the model: com-
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pensation, had-mentor, experience, and gender. The VIF scores of these variables

were < 2, signifying low collinearity among the variables.

In this paper, we report all analysis results at α < 0.05. We used the R statistical

software to perform our analysis.

2.3 Stage 2 - Study Planning

Our goal in Stage 2 was to find challenges that OSS mentors face and the strate-

gies they employ to mitigate them. We recruited mentors from the Stage 1 survey

who said they would be available for a follow-up interview. Additionally, in order

to get a broader understanding of mentors’ challenges, we also recruited mentors

from several other OSS communities using convenience sampling and snowballing

techniques. Specifically, we sent out recruitment emails to two OSS contributors

who we knew to be mentors. Additionally, at the end of each interview, we asked

participants to recommend other mentors we could contact.

In total, we interviewed 18 experienced OSS mentors, 10 from several OSS projects

(P1-P10) and eight from the ASF community (P11-P18). Out of these eighteen par-

ticipants, 11 self-identified as men, six as women, and one preferred not to disclose.

All of our interviewees had a minimum of 1-2 years of experience in the OSS project

they are currently in. We kept interviewing until we came to an agreement that no

new challenges were identified for at least 2 interviews. According to Strauss and

Corbin [87], sampling can be discontinued once the collected data is considered

sufficiently dense and data collection no longer generates new information. Table 2

present the demographic information of the interviewees.

Table 2 Stages 2 and 3 - Demographics for the Interviewed Mentors

Participant ID Gender Years in OSS OSS Project

P1 Man 3-5 Apache Lucene, Solar
P2 Man 3-5 Gnome
P3 Man 3-5 RedHat
P4 Man 1-2 RedHat
P5 Man 6-10 Gnome
P6 Woman Over 10 Linux Kernel, Apache Spark
P7 Man 3-5 Not mentioned
P8 Man Over 10 Linux Kernel
P9 Man 6-10 KDE

P10 Woman 3-5 Open Hatch
P11 Man Over 10 ASF
P12 Woman 3-5 ASF
P13 Woman Over 10 ASF
P14 Woman Over 10 ASF
P15 Prefer not to say Over 10 ASF
P16 Man 3 ASF
P17 Man 3-5 ASF
P18 Woman 3-5 ASF

2.4 Stage 2 - Data Collection

We used semi-structured interviews, which consisted of a mixture of open-ended

and specific questions that were designed to elicit foreseen and unexpected infor-

mation types [71]. In this kind of interviews, the questions are planned, and we

seek to answer them, but they are not necessarily asked in the same way or order

as they are listed [66]. We designed our interview script according to the literature

recommendations [66, 71]. Before interviewing the participants, we conducted four
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pilot interviews with Ph.D. students who had experience working in industry or

OSS environments to validate the script and confirm whether the interview would

fit in a 1-hour time slot. The pilot participants answered all the interview questions

and provided us feedback about the flow of the script. The results of these pilot

interviews were discarded. We also analyzed the questions and answers to ensure

that they provided data that would answer our research questions.

Two researchers ran the semi-structured interviews, which lasted around 40-

minutes: one researcher led the interview while the other observed and took notes.

All interviews were remotely undertaken using Skype, Google Hangouts, or phone.

With participant consent, we audio-recorded all interviews, which were transcribed

for the analysis. Before each interview, we shared a consent form with the partici-

pants asking for their agreement. After the interview, we thanked our participants

and compensated them with a gift card or a equivalent value in donation to the

OSS project/organization of their choice.

2.5 Stage 2 - Data Analysis

Each interview was manually transcribed, and then three authors employed a card

sorting approach [76] to analyze the data. They started by unitizing each interview

into individual cards and applied open coding to classify strategies and challenges.

During five weeks, the partial results were discussed and validated on a weekly

basis with three more experienced authors. The whole process was conducted using

continuous comparison [87] during the coding sessions and negotiated agreement [32]

(as a group). In the negotiated agreement process, the researchers discussed the

rationale they used to apply particular codes and reach consensus on which code

should be applied for a given excerpt [29, 32].

We found a total of 25 challenges as presented in Table 4. Mentors from the

diverse set of OSS communities (P1-P10) reported 19 of these challenges. Mentors

from ASF (P11-P18) mentioned 7 challenges that were common to these challenges

and 6 new types of challenges.

3 Results
Our study reveals characteristics of mentors (RQ1), challenges they face in men-

torship activities (RQ2), and specific challenges and strategies for recommending

tasks for newcomers (RQ3). In this section, we report our findings per research

question.

3.1 Characteristics of OSS mentors (RQ1)

In our survey, 559 individuals answered the mentorship question, out of which 175

respondents indicated they play a mentorship role at least once a month. We used

a linear regression model to answer RQ1 as discussed in Section 2.2.

Table 3 presents the result of the regression model. The dependent variables “Com-

pensation” where its value is unpaid and “Experience” level < 1 year had negative

estimates and were significant (p < .05). The negative coefficients indicates that

an increase in these factors is linked with a decrease in the likelihood of the con-

tributor with those characteristics to be a mentor. Based on our data, we conclude

that contributors are less likely to be a mentor when they volunteer (not

compensated) and have less than 1 year of experience.
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In our dataset, proportionally both women and men had similar distribution of

being mentors—31% (153 out of 495 men are mentors) as compared to 32% of all

women who serve as mentors (12/28). Indeed, we did not find statistical significance

for the impact of gender on being a mentor. However, we highlight that we only have

a few women in our sample—5% (28 out of 559), which might impact our analysis.

(We do not include those individuals who preferred to not state their gender in this

analysis). This proportion of women in our survey respondents concurs with the

overall proportion of women (5.2%) in ASF found earlier in [72].

Table 3 The linear regression model with standardized coefficients showing how different factors
influence an OSS contributor to be a mentor. The level of statistical significance is indicated with
asterisks: (*) for p ¡ .05, (**) for p ¡ .01, and (***) for p ¡ .001

Coefficients Estimate Pr(>—z—)

(Intercept) 1.2743 0.0341 (*)
Partially Paid Contributor (provides paid and unpaid contributions) 1.5077 0.1817
Volunteer Contributor (all contributions are Unpaid) -0.8696 0.0299 (*)
Contributor who had a mentor 0.1299 0.7418
Experience as Contributor between 1 to 2 years -0.5238 0.4328
Experience as Contributor between 3 to 5 years -0.7232 0.2578
Experience as Contributor between 6 to 10 years 0.1252 0.8488
Experience as Contributor less than 1 year -1.5859 0.0153 (*)
Identified the gender as woman 1.0728 0.204

3.2 Mentorship challenges (RQ2)

In this paper, we extend our previous work [4], in which we qualitatively analyzed

data collected from interviews with mentors. We found 19 categories of challenges

that affect mentors classified as:

• Personal challenges – related to personal characteristics of mentors;

• Interpersonal challenges – related to the relationship between community and

mentees;

• Process challenges – imposed by the organization or by internal procedures

or practices;

• Technical challenges – directly related to or caused by technology, including

frameworks, programming languages, and/or tooling used in the project.

In the present study, we extended Balali et al. [4] by interviewing mentors from the

ASF. We found 13 categories of challenges in this new dataset, 7 that were already

previously identified and 6 new categories. We classified the new challenges using

the above schema. Table 4 presents the aggregated results. P1-P10 are participants

from Balali et al. [4] and P11-P18 are the ASF participants.

3.2.1 Process challenges

Table 4 presents the five process related challenges that mentors face; with three

that come solely from the ASF interviewees and identified with a ∗ in the table.

The challenge difficulty in identifying appropriate tasks for newcom-

ers was highly pointed as a challenge for mentors. According to P3, “to keep

them [the newcomers] engaged you need [. . . ] to pick a task that is appropriate for

them. . . , which can be a challenge for mentors.” When a newcomer’s background

and goals are unclear, it can be difficult for the mentor to point them to a specific

task. Choosing a task was also previously identified as challenging for newcomers



Steinmacher et al. Page 8 of 30

Table 4 General Challenges Faced by Mentors. Each participant could mention multiple challenges.
Cells marked with (*) represent the new challenges we found in the present study and the participants
who mentioned them.

Category Challenge Name Challenge ID

Process

Difficulty in identifying appropriate tasks for newcomers Pro1
Not having a formal procedure for introducing the community
(P11, P17)

Pro2

(*) Lack of established governance with processes and rules
(P11, P12, P14, P15)

Pro3

(*) Lack of process to shift mentors (P13) Pro4
(*) Mentors do not participate in decisions to promote people
(P14)

Pro5

Technical Difference in the devices that mentors and mentees use T1

Personal

Handling a large number of mentees Per1
Difficulty in switching context Per2
Difficulty in time-management (P12, P17) Per3
Difficulty in managing different accounts Per4
(*) Not getting paid to be a mentor (P18) Per5

Interpersonal

Adjusting interaction style to different mentee personalities I1
Difficulty guiding mentees who are resistant to coaching I2
Providing constructive feedback based on the mentee’s back-
ground

I3

Convincing people to start small rather than big I4
Ensuring that the mentees finish their work I5
Difficulty in creating an inclusive community (P17) I6
Difficulty to keep the mentees engaged (P16) I7
Cultural differences I8
Communication issues related to time zone and place (P14,
P16, P18)

I9

Lack of English language skills (P13) I10
Lack of mentor’s interpersonal skills (P15, P17) I11
Harsh project atmosphere I12
(*) Difficulty to manage a financially mixed team (paid and
volunteers) (P11)

I13

(*) Difficulty to track the mentees’ progress (P15, P18) I14

as well [80]. Due to the identified relevance of this challenge, we went deeper on it

in RQ3.

In addition, if processes are unclear, the mentor must figure out how to get their

mentees the information they need. Not having a formal procedure for in-

troducing the community was reported as a challenge by P9, who stated that

“[. . . ] the challenges I have faced are related to how to decide which part of the

community to introduce first to the students. It is not totally clear in ¡project-

name¿ since we have many processes and don’t have a formal procedure for

the introduction.”

Mentors also reported they miss a “definitive guide to participate” (P11) or a “con-

tribution path that helps people progress through the project” (P17).

ASF participants also mentioned a lack of established governance with

processes and rules leads to misinformation and behavior issues. When having

“unstated rules” (P14) or when “things are not documented, there are no rules”

(P11). Associated to the the rules, “there need to be consequences for action when

people derail in the mailing lists” (P12). Besides rules and consequences, mentors

complain about the lack of a standard and documented guideline with the main

regular processes that contributors need to follow. When not having a documented

process to follow, mentors need to remember “how we did last time” (P15) or each

one can decide “what is the best way to do it” (P15). Moreover, there is a lack

of process to shift and substitute mentors. Finally, although they “try
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to influence decisions” (P14), mentors do not participate in decisions to

promote people.

3.2.2 Technical challenges

Only one technical challenge was mentioend by mentors: differences in the

devices that mentors and mentees use. When mentors and mentees are not

using compatible devices or operating systems, it is hard for a mentor to help resolve

a newcomer issue. P2 stated

“the operating system and distribution my computer is running is very dif-

ferent to what the newcomer is running. If a newcomer has an issue, I try to

reproduce it, and I may not have this issue which makes it harder to help.”

3.2.3 Personal challenges

We identified five personal challenges that impact mentors, with one specifically

about the ASF (marked by ∗ in Table 4). The challenges relate to their ability

or lack of ability to manage the responsibilities that come along with mentorship.

Handling a large number of mentees can be overwhelming, as stated by P6: “I really

wish it was easier to deal with a lot of people.” This challenge is related to scheduling,

which also creates difficulty in switching context between helping mentees

and doing their own work. P10 explained that “if you are not actively focusing

your attention on [your mentee] continuously, context switching can be difficult

between doing my work and helping them with theirs.” As a part of mentorship,

mentors are expected to complete their own work and be available to help their

mentees. Three participants from previous work and two from ASF mentioned that

difficulty in time-management can be challenging, since mentors must choose

how to allocate their time to the project, sometimes weighting different activities,

such as working on code, mentoring, and reviewing. Mentors feel “overcommitted”

(P12), as mentorship is “time-consuming” (P17) and finding “time is the hardest

thing” (P12).

Mentors can also encounter problems in aligning their schedule with newcomers,

as mentioned by P4: “being able to contact them [the newcomers] and give feedback

was sometimes difficult.” Finally, difficulty in managing different accounts

was mentioned as a challenge, since “it’s really annoying to have a lot of accounts

to keep track of.”

In the present study, we identified one new category of personal challenge of

not getting paid to be mentor that can affect the mentor’s motivation and

availability, as mentioned by one of the interviewed mentor: “[...] as long as you’re

not working on the project full time, or you’re not getting paid, it would be really

difficult to mentor [...] unless we get something in return” (P18).

3.2.4 Interpersonal challenges

Interpersonal challenges is the category with the highest number of challenges re-

ported by the mentors; twelve already identified in Balali et al. [4] and two new

ones from the ASF context. Indeed, social interactions play a key role in mentoring.

First, since people who work in an OSS project come from diverse cultures, cul-

tural differences is challenging for mentors. P8 mentioned “in some cultures,

people get more upset when people criticize their code. . . which can be tough.”



Steinmacher et al. Page 10 of 30

Moreover, when newcomers and mentors are geographically distant, they do not

have the opportunity for face-to-face interaction, which can, for example, inhibit

informal communication and reduce trust. Therefore, communication issues re-

lated to time zone and place affect the communication process during mentor-

ship, as people usually “can’t talk in person” (P14) and “most of the communication

happens async on Slack” (P18). Mentors can feel they “haven’t communicated them

[mentees] well enough” and be disappointed when “[mentees] write an email and

have to wait. Sometimes one day, two days” (P16).

Also related to communication in global settings, lack of English language

skills was mentioned by P9 as hindering the mentorship process: “My English

is so-so . . . when both parties have difficulties communicating, it is challenging to

overcome and we don’t have good tools for that.” Having a “English [that is] not good

makes [mentors] afraid to participate in tech discussions” (P13). The language can

also impact reading documentation, as “if that documentation is not equally legible

by everybody who claims to be part of [the community], there is a problem” (P13).

We also observed that a mentor’s inability to interact with newcomers (lack of

mentor’s interpersonal skills) can greatly impact a newcomer’s decision to

continue contributing to the project. “People might not have the skills to be a men-

tor, or knowing how to teach somebody” (P17) and “have patience [with mentees]”

(P15, P17). Mentors frequently highlight the importance of social aspects, as evi-

denced by P3: “. . . the biggest pitfalls of the mentor are: not being responsive and

not engaging in other ways than just coding. These projects are about community

effort and more than just the code.”

Mentors also face challenges in adapting to how different types of people learn and

take in the information presented to them. Two mentors reported that adjusting

interaction style to different mentee personalities is a challenge, since

mentors are likely to collaborate with diverse people who have unique personalities

and working styles, as stated by P9: “[. . . ] you always have to adapt based on

each individual newcomer [. . . ] one solution doesn’t always work for everyone.”

Mentors need to understand their mentees and tailor aspects of the coaching to

fit them. For a mentor, determining how to be an effective teacher for a mentee

can be difficult. Four mentors mentioned difficulty guiding mentees who are

resistant to coaching. Sometimes mentors are required to face the challenge

of teaching newcomers who lack a desire to learn. In this sense, P5 mentioned

“But I still don’t know how to help people who don’t want to learn. Also related to

coaching, mentors reported that providing constructive feedback based on

the mentee’s background is challenging. Mentors must tailor their comments

and criticism to the way a newcomer learns, while taking into account their prior

experience and level of self-efficacy. P4 reported that “being able to understand the

student’s background and the way they see this stuff and give proper feedback is

kinda hard.” Some mentees value feedback, while others may not easily perceive it

in a constructive manner.

Moderation is sometimes required for mentors when dealing with newcomers. For

example, newcomers who are eager to contribute something relevant to the project

tend to start with a task that may be too large or complex for their skills set.

Convincing people to start small rather than big was reported as a dif-



Steinmacher et al. Page 11 of 30

ficulty, as explained by P6: “the other challenge is convincing people to start small

rather than big because lots of people want to make big changes but I can’t help

them with those.”. This challenge relates to the process challenge called “difficulty

in identifying appropriate tasks for newcomers.” Ensuring mentees finish their

work was reported as a challenge by P3, who mentioned that “the biggest chal-

lenge is making sure they are working and making sure they will finish the project.

Otherwise, it is a fail for the mentor if the mentee doesn’t finish.”

Mentors also mentioned a Difficulty to keep the mentees engaged, because

“people come, they come, they fix their bug and they go away.” (P16) Indeed, Pinto

et al. [59] showed that a great number of newcomers place a single contribution

and do not return to the project. Additionally, Steinmacher et al. [83] showed that

many newcomers submit one or more contributions, which are not accepted by the

community, and they do not come back.

As the community grows, the diversity of contributors grows in parallel. Inclusion

is important for attracting newcomers, as well as retaining them and increasing

their productivity [91]. The participants of our study seemed to be aware of this and

placed particular emphasis on this challenge. Mentors mentioned the difficulty

in creating an inclusive community as a challenge. Mentors try to ensure that

newcomers feel comfortable and are not discriminated against. P3 explained, “It is

about the community. There has been a lot of discussion about gender pronouns and

this is very important to take into account to make sure the community is inclusive

of all, especially for newcomers.” The community can miss diversity also in terms of

tenure, when not bringing novice leaders, as stated by P17: “no one with less than

10 years of experience is well regarded to lead anything at the foundation, which

then imposes this chicken egg analogy into diversity and inclusion.”

A frequently mentioned challenge was harsh project atmosphere (mentioned

by 8 out of 18 mentors). This challenge affects mentors, since they face difficulty in

supporting newcomers who fear disagreements among committers in the community,

as stated by P1: “I may find a patch to be fine and ready to commit but some

other committer may look at it and not agree that it is fine.” This is particularly

challenging for mentors, since it is largely out of their control.

Difficulty to track the mentees’ progress is a new category from the

present study. As mentioned by one of the interviewed mentors: “They [the mentees]

do not come out easily. And that is when I had to go in to [help]: Did you do this

step? What was the output for this? [...] I’m not so extensive on doing this, but

[do] from from time to time. [...]” (P15). This challenge can be related to a lack

of management skills of the mentor on monitoring the progress of remote teams or

to lack of attitude of the mentee on reporting pitfalls and asking for help. Mentors

and mentees should both have clear responsibilities to know the boundaries of each

one’s work to mitigate this challenge. Communication hurdles can also be a cause

for this challenge, as mentioned “[Having] the visibility of the work they were doing,

because everything was so async” (P18).

3.3 Challenges in recommending tasks for newcomers (RQ3)

In order to answer this RQ, we go deeper in the challenge Difficulty in identi-

fying appropriate tasks for newcomers (Pro1 from Table 4). The analysis of

the interviews resulted in seven sub-categories for this challenge. We also catalogued
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thirteen strategies employed to overcome those challenges, which we grouped into

five categories. The challenges are shown in Table 5 and discussed as follows.

Table 5 Challenges faced during the process of task recommendation for newcomers in OSS projects

Challenge name ID Mentioned by

Challenging tasks can create social fears in the newcomers Pro1.1 P1, P3, P4, P10
Mentors have to deal with newcomers’ lack of holistic under-
standing about the project and its culture

Pro1.2 P1, P2, P3, P4,
P9

Lack of information about how newcomer-friendly a task is Pro1.3 P1, P10
Difficulty in identifying the complexity of a task Pro1.4 P7, P8
Difficulty in estimating the amount of time necessary to finish a
task

Pro1.5 P1, P8

Lack of friendly tasks available for newcomers Pro1.6 P2, P4, P5
Lack of available information about newcomer’s skills, interest,
and expertise

Pro1.7 P2, P4, P7, P9

(Pro1.1) Challenging tasks can create social fears in the newcomers .

Due to the socio-technical nature of OSS projects, newcomers may feel fearful of

exposing a weakness or failing. P1 noted that “Usually, because of social fear, they

just back off. They think they are not good enough or they don’t know enough.”

P4 also mentioned that “the biggest barrier is being afraid of being judged.” P10

similarly stated: “sometimes newcomers will be shy to ask for help or not actively

engaged when not knowing where to start.” Mentors need to deal with these issues

when directing newcomers to appropriate tasks.

(Pro1.2) Mentors have to deal with newcomers’ lack of holistic under-

standing about the project and its culture . Projects are a complex socio-

technical landscape, and newcomers have contact with isolated parts of the code or

tasks. As mentioned by P1, “when a newcomer comes in, one thing is they don’t un-

derstand all the moving pieces of the codebase. Even if they get the code, they don’t

get the impact on the bigger scheme of things.” To make things worse, projects

have specific conventions and protocols, and, as mentioned by P2, “sometimes the

people are so used to these conventions, they have a hard time communicating them

because they don’t realize they exist.”

(Pro1.3) Lack of information about how newcomer-friendly a task is .

Often, there is a large number of tasks in the issue tracker—including potentially

easy ones—but “no direct way to spot tasks suitable for newcomers”. P1 mentioned

that “we don’t know if things are suitable for newcomers.” They complain that

people who add issues do not add relevant information and tags that would indicate

that the issue is simple to fix. Moreover, the tags that indicate easy tasks only appear

for tiny and isolated tasks. P10 identified a concern about such tasks for newcomers:

“I dislike having things labeled as ’bite-size’ because it may cause someone to skip

talking to anyone and just grab something. You miss out on a lot of important

social interaction.” According to this mentor, isolation and lack of interaction for

newcomers can increase their social fear.

(Pro1.4) Difficulty in identifying the complexity of a task . Some mentors

also reported difficulties in estimating a task’s complexity. P8 said “We don’t have a

good way [to evaluate the difficulty of a task]. (...) There’s a lot out there to analyze

the complexity of the code, but I’ve found none of it to be helpful in the ¡project-

name¿.” Therefore, developers most often rely on their experience to evaluate a

task. However, experts suffer from the “curse of knowledge”—the difficulty seeing
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something from an outsider’s point of view [67]. This was observed by P7: “A task

may be more involved and technical than we thought initially. Then we may realize

a task isn’t suitable for someone because it’s actually an expert level task.”

(Pro1.5) Difficulty in estimating the time necessary to finish a task.

Complementary to the complexity of the tasks, mentors are also concerned about its

duration. Usually, mentors do not want to give newcomers long-term assignments

and, sometimes, even low complexity tasks can take long. However, determining

the time to complete a task is not trivial, even for easy/non-complex tasks. P8

mentioned this difficulty: “It’s hard to estimate the time needed for a task. I’m not

good at gauging what is appropriate for a newcomer.” This can be even worse when

newcomers’ tasks need to be reviewed by other stakeholders for compliance or other

reasons, as mentioned by P1:

“Newcomers have to wait a while sometimes for a review, and it may even

take months to get a review because people are busy.”

(Pro1.6) Lack of newcomer-friendly tasks available. Sometimes, there are

no easy-enough tasks available at the moment. Some interviewees reported that:

“if you’re a newcomer and come at a time when there aren’t many tasks open

for newcomers, . . . then the difficulty lies in finding something in a certain

application to turn into a newcomer task [P2].”

(Pro1.7) Lack of available information about newcomer’s skills, inter-

ests, and expertise. Since mentors may lack information to help them assess

newcomers’ characteristics, they often misjudge newcomers’ abilities, as P9 men-

tioned: “sometimes you think they can take on more than they, in reality, are capa-

ble of.” Mentors often do not have access to a portfolio, or a set of previous work to

evaluate the newcomers’ abilities, as P4 said “some [newcomers] are very good but

they don’t have some work portfolio to show their previous skills.” As P8 explained,

“we don’t have a good way to match a task with a developer.”

3.3.1 Strategies for recommending tasks to newcomers

We identified 13 strategies employed by mentors to alleviate the challenge of recom-

mending tasks for newcomers, as presented in Table 6 and Figure 3. We classified

the strategies into five main categories, as described below.

Table 6 Strategies to identify task complexity

Category Strategy Name Mentioned by

Identify task complexity

Reproducing the bug P2
Comparing the complexity of new bugs
with existing bugs in bug tracker

P2

Tagging the task based on difficulty P1, P2, P4, P5, P6, P7
Adding documentation P2, P4
Discussing tagging in the conferences P1

Strategies to identify task complexity Identifying task complexity is chal-

lenging even for mentors (Pro1.4). We explicitly asked our participants if they use

a tool to help determine a task’s difficulty. Eight out of ten participants mentioned

that they do not use any tool but reported several strategies as follows.

Reproducing the bug For bug-related tasks, mentors reproduce the error to

further understand it. As P2 explained, “First of all, we reproduce the bug and try
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Figure 3 Overall view of the strategies

to see what is causing it and find out what is necessary to fix it. Then we assess

whether the skill level is similar to what a newcomer would have to fix it.”

Comparing the complexity of new bugs with existing bugs in the bug

tracker To further understand task complexity, mentors use previously tagged

issues as a scale, comparing the complexity of new tasks with existing ones to find

newcomer-friendly tasks, as P2 stated: “we use, for example, the bug tracker to

figure out if a bug is at the same level as other newcomer bugs we have.”

Tagging the task based on difficulty Six mentors reported that, in their

projects, tasks are tagged based on difficulty. Tags make newcomer-friendly tasks

more visible and identifiable by mentors and newcomers. As P5 also pointed out,

“Mentors are strongly encouraged to tag tasks for newcomers based on complexity

(how many concepts does a newcomer need to know, how deep should one’s knowl-

edge be).” In Figure 4, we can see examples of issues labeled as “good first issues.”

As P4 described, “we have this tool called Bugzilla, which we are tracking all the

bugs. When we file a bug we find to be easy; instead of going directly to fix it, we tag

it with a newcomer tag so that we have in our website a list of bugs that are suit-

able for newcomers.” P6 added that, “we basically tag things that are good starter

issues. If someone asks, we show them these starter tasks list. It’s not perfect, but it

works.” On the other hand, P7 complemented that newcomers do not want to only

work on beginner tasks and that labelling a task “beginner” is not very reward-

ing to those working on the tasks. This mentor also reported having “medium”

and “major” tags, which people can progress through as they go. However, P10

remembered that evaluating task difficulty is complicated: “You’re describing the

relationship between the person solving it and the task itself. For one person, it may

be easy, and for someone else it may not, it depends on the background. Some tasks

are more difficult for more people, so you can say it’s difficult overall.”
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Figure 4 JabRef’s issue tracker with labels (“good first issues”) to help newcomers identifying
appropriate tasks

However, as previously mentioned, the lack of information about how newcomer-

friendly a task is (Pro2.3) was frequently cited as a challenge. P10 affirmed that tags

might not be enough: “it can be tough if a project doesn’t do a good job grooming

tasks. When you label something as a good task for newcomers, it’s necessary to

check out some things before making that assessment that it’s an easy task.”

Adding documentation Sometimes, project members also add information in

the issue tracker to help newcomers, as explained by P4: “we put in the description

how we want the contribution to be and which file they should look at. So we are

pretty much tagging bugs and creating tutorials on how to fix this specific bug so they

can learn the whole process of how to make their contribution.” P4 further explained

that the required skills should also be clear: “You look at the description of the

task, you should be able to see if it requires familiarity with C, JavaScript, regular

expressions, etc.” P2 further added: “usually when mentors assign the newcomer

tag, we add clarifying info for the newcomer to read... we also provide specific

resources for specific projects.”

Discussing tagging in conferences Due to the relevance of tagging tasks in

OSS project environments, members of OSS projects hold discussions to improve

tagging, as P1 explained: “Some committers get together at conferences and meetups

to discuss ideas to help newcomers when getting involved... We discuss tagging at

those conferences.”

Strategies used to identify skills required for finishing a task Besides de-

termining task complexity, mentors and newcomers need to understand the neces-

sary skills to complete a task. We found that mentors usually employ two strategies

to identify the skills needed for working on a task, as listed in Table 7.

Table 7 Strategies to identify the skills required to finish a task

Category Strategy Name Mentioned by

Identify skills required
for finishing a task

Breaking the code into sections and identify the
concepts/algorithms involved in that task

P5, P6, P10

Forming a mental model to help assess a task P6, P10

Breaking the code into sections and identifying the involved con-

cepts/algorithms Breaking the code into pieces may help to identify required

skills, as explained by P5: “To measure the skills, I go through the code line by

line and break it into sections to tell what concepts are needed. I determine what

algorithms they would need to know, what hardware they need to know, and what
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coding skills they need to work the bug.” However, recognizing the required skill set

for finishing a task is not an easy endeavor for mentors, as P10 stated: “[identifying

what skill is required for finishing a task] is a little tough because there may be some

unexpected elements.”

Forming a mental model to help assess a task We noticed that our par-

ticipants reported forming a model of the project structure in their minds, which

helped them recommending the appropriate tasks for newcomers. For instance, P6

mentioned “When I see a task, I can make a mental model of where it may fit.”

Mental models are internal representations of the world that help humans under-

stand, describe, and anticipate events and situations [39, 40]. P10 reported that

she thinks through a workflow model to consider the required skills and possible

locations for a bug.

Strategies to identify newcomer’s characteristics Another important aspect

of supporting task selection is determining newcomers’ characteristics, including

but not limited to their interests, expertise, and areas of improvement. Mentors

report identifying newcomers’ characteristics as challenging (Pro1.7). Eight of our

participants mentioned they evaluate newcomers’ expertise, and five mentioned they

look for what newcomers are interested in before recommending tasks to them. Our

interviewees highlighted that they avoid recommending tasks that newcomers do

not like, as P3 stated: “I like to ask them if they would be interested in a task before

assigning.” Therefore, it is important that mentors identify newcomers’ interests

and areas of expertise. From the analysis of the interviews, we found two strategies

mentors apply to help identify newcomers’ characteristics, as presented in Table 8.

Table 8 Task recommendation strategies to identify the newcomers’ characteristics

Category Strategy Name Mentioned by

Identify newcomers’
characteristics

Asking newcomers directly about their interests and
expertise

P1,P3, P4, P6,
P7, P9, P10

Evaluating previous contributions P4, P9, P10

Asking newcomers directly about their interests and expertise Our

participants learn about newcomers’ interests and characteristics by directly asking

them what they like and what their past experiences involved. P10 mentioned, “I

try to talk to them and help them before sending them off to look at the issue tracker.

I gauge their interests and their mindset about the process to find a task for them.”

P6 complemented this view: “I will ask someone what they are excited about and

what they think their skills are, and then I’ll tell them where to look, and they’ll

come back with some issues.”

P10 explained that her first question is usually: “what is your background?” She

also explicitly asks about previous experience with the platform: “If a person says

they haven’t worked on GitHub, that lets me know a big part of their first contribution

will be getting to know how to use these basic tools. So maybe they will do something

like fix a typo, very straightforward.”

Mentors also take into account the initial confidence of newcomers toward a spe-

cific task before assigning it to them. When people are initially confident, they

associate success with their ability and failure with bad luck [28]. In this sense, P1

stated that, “If they’re confident with their technical skills, we point them towards

stuff involving what they know.”
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Besides the current skills, mentors also ask newcomers what they want to improve,

as P10 explains: “The two main things are: their [newcomers’] experience and how

much they are looking to learn within a specific task. Do you want something easy

for you? Or do you want to jump into something above your skill level?” Mentors

report that having had some experience with the task creates a positive impact on

their performance and motivation, as P1 stated: “If someone is good with ZooKeeper

interactions, we would point them towards areas that focus on that.”

Evaluating previous contributions Previous contributions provide evidence

about newcomers’ expertise, as explained by P4: “If we have some way to see past

contributions of the newcomer, you can easily see it is something related to that they

have done before.” However, the mentor added that “Some students are very good,

but they don’t have some work portfolio.”

Scaffolding newcomer’s skill acquisition Mentors frequently mentioned how

they recommend a sequence of tasks to onboard newcomers, as presented in Table 9

and described below.

Table 9 Strategies to scaffold newcomers’ skills acquisition

Category Strategy Name Mentioned by

Scaffold newcomer’s
skill acquisition

Assigning a small task first and then chal-
lenging the newcomers with bigger tasks

P3, P7

Recommending repetitive tasks P3
Letting newcomers choose their tasks P1, P2, P4, P5, P6, P8, P9

Assigning a small task first and then challenging the newcomers

with bigger tasks According to our interviewees, offering newcomers small starter

tasks provides mentors the opportunity to evaluate newcomers’ skills and interests

and support them through the learning curve. Regarding this, P7 stated: “Some-

times . . . you have to start on the basic tasks and go from there. We see how they

are doing and then move forward.” Furthermore, mentors state that assigning small

tasks that newcomers can complete keeps them motivated. P3 explained the task

“has to be technically very simple[...] For example, one of the tasks we have for new-

comers is modifying strings on the UI, so they get excited about having made that

first contribution and see that everyone is using it. Since they face so many other

challenges, the first task should not be technical. They have to figure out the tooling

and Bugzilla so there is a lot they must overcome.” Mentors adjust the trajectory

of tasks based on how they see the newcomers’ performance: “if the task should take

about a week and the person finishes in a couple of days, you think ‘hmm this may

be too easy for them’.”

Recommending Repetitive Tasks Mentors also use a strategy of assigning

newcomers repetitive tasks to help them master specific skills and gain confidence

before they move to more complex tasks. For example, P3 mentioned that“I usually

choose tasks that are repetitive but not very technical, so maybe modifying many lines

of code in the same way. It is not very technical, but then they learn a bit more about

the programming language or the API.” P6 complemented this view: “Usually, its

better if they don’t have to learn a new skill right away.”

Letting newcomers choose their tasks This was not classified as a strategy,

but we want to highlight that some mentors prefer to let newcomers find tasks that

suit their expertise and interest, as P5 explained: “I don’t assign tasks. One step

of being a contributor is choosing your own task. We use Bugzilla, which lists all
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the bugs and tasks, and newcomers go there and pick something to work on. People

come to me when they don’t know what to do. Then, I guide them about what is

easier and more complex and give them pointers.” This view is shared with P1: “they

usually just pick up something they know they would like.” Seven of our interviewees

mentioned that they usually identify a subset of tasks and allow newcomers to choose

the tasks they are more willing to accomplish.

Restructure project’s task landscape There are times during the project life

cycle in which no newcomer-friendly task exists [4]; this was mentioned as a challenge

by our mentors (Pro1.6). In these cases, mentors apply strategies to restructure the

project’s task landscape to explore or define newcomer-friendly tasks. We found two

strategies that mentors employ to achieve this goal, as can be seen in Table 10.

Table 10 Strategies to restructure the task’s landscape

Category Strategy Name Mentioned by

Restructure project’s
task landscape

Dividing tasks into smaller pieces P2, P3
Encouraging newcomers to add functionalities P5

Dividing tasks into smaller pieces Whenever possible, mentors divide tasks

into smaller pieces, as P3 explained: “usually we can divide the tasks based on

the project itself and knowledge about specific parts of the project.” This mentor

preferred to create tasks related to the user interface: “There are parts of the projects

that are low-level and parts using the UI. The UI parts are less technical and less

demanding for a contributor while low-level tasks are more demanding.”

Encouraging newcomers to add functionalities Another strategy re-

ported by our interviewees involves encouraging newcomers to propose and add

new functionalities to the project. Regarding this, P5 stated: “In Gnome To Do,

in the beginning, there were 6 tasks which were big and not suited to newcomers.

Because I didn’t have any easily fixable tasks, I encouraged newcomers to add new

functionality as a way to contribute.”

4 Discussion
In the following, we discuss the implications of this study for research and practice

in light of our results and related literature.

4.1 Supporting Mentors

Mentors in OSS projects provide valuable guidance and perspective as contribu-

tors, which has been shown to be beneficial [4, 25]. However, as our work reveals

being a mentor in OSS comes with its own own set of challenges, many of which

are outside of the technical realm. Further, as our participants revealed there is no

training available for mentors. None of the participants in our study had received

any mentoring-related training. Given the challenges that mentors face (Table 4), it

is not surprising that contributors were more likely to be mentors when they were

being paid to contribute to OSS. We posit that these (compensated) mentors might

be taking on this role to help their colleagues from the same company. Another rea-

son for volunteers to be less likely to be mentors can be because mentoring remains

“invisible” work [37], not getting the same level of recognition as technical contri-

butions. A case in point are the leadership boards that only account for commits in

their calculations. It is likely therefore, that volunteers have to decide where their
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contributions can get them the most recognition (recognition is a key driver for

participation in OSS [33, 93]) and forgo mentoring activities. Our results highlight

the need for large communities to acknowledge and recognize invisible work like

mentoring, since it serves as an important bridge for newcomers [22].

When thinking of supporting mentors, we need to recognize that it involves much

more than providing technical resources or help. In fact, the majority of the chal-

lenges reported by participants were non-technical in nature. Thus, it is important

to provide mentoring-specific training that helps potential mentors improve their

social skills (including coaching and other psychosocial support [7]), which can be

decisive for the newcomers’ onboarding success. P3 stated this as a problem with

mentors: “. . . the biggest challenges for mentor are: [. . . ] engaging in other ways

than just coding. These projects are about community effort and more than just

the code.” The mentoring literature shows that a mentor can help shield a mentee

from flaming wars with more senior members and intervene in certain situations to

help them resolve it appropriately [42]. Thus, helping newcomers with interpersonal

challenges and making them feel supported potentially helping newcomers getting

comfortable and productive.

4.2 Supporting task recommendation

Finding an appropriate task for newcomers in OSS projects is challenging for men-

tors. This was also reported by Ann Barcomb and colleagues [8] in the context of

episodic contributors. They found that community managers find it difficult to iden-

tify and maintain a list of tasks that can be picked up by newcomers to a project.

In this paper, we evidenced that this process involves multiple challenges related

to understanding newcomers’ backgrounds and having a comprehensive knowledge

about the tasks in the project. We also observed that the mentors have different

strategies to overcome the challenges, which rarely rely on automated processes.

In particular, identifying task complexity is relevant since newcomers may feel

demotivated if tasks are too simple or too complex. To determine task complexity,

mentors reproduce the bugs, compare the bugs to other bugs on the issue tracker,

and rely on tags, documentation, and discussion. Besides identifying task complex-

ity, mentors determine the skills required for finishing the tasks. Although some

mentors are aware of tools that can help identify the complexity of tasks and re-

quired skills, they do not find them useful for this purpose and instead rely on their

judgment. When they are unable to find any tasks that would be appropriate for

newcomers, mentors work to improve the project’s task landscape by introducing

additional functionality to the project or dividing tasks into smaller pieces.

In particular, mentors mentioned that they identify newcomers’ characteristics

by evaluating their interests and expertise, their confidence levels, and the skills

they want to improve. Based on their mental models and the self-assessment of

newcomers, mentors try to match newcomers and tasks. To support skill acquisition,

mentors progressively increase the task complexity level to challenge newcomers and

also assign repetitive tasks.

Concerning the strategies applied to identify and recommend the tasks to new-

comer, we noticed that the findings of this study presents a considerable intersection

with the practices proposed by Barcomb et al. [8]. For example, similarly to the

strategy “Tagging the task based on difficulty,” Barcomb et al. report that “Iden-
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tify appropriate tasks” and “Define one-off tasks” are good practices for community

preparation to episodic contributors.

Provide easily accessible information about tasks. When mentors assign

tasks to newcomers, they need to filter them based on factors such as complex-

ity and required skills. Without proper information, they must sift through the

available tasks and read descriptions to triage tasks that are newcomer-friendly

or “low-hanging fruits” [95]. Depending on the size and complexity of the project

and the number of available tasks, this can be a complicated and tedious activity.

For example, the project kubernetes[1] had more than 2,000 open tasks when this

paper was written.

Labeling/tagging is a widespread practice for providing support in task selection.

During this process, project members add labels to tasks, as described by our inter-

viewees (Section 3.3). Our survey respondents acknowledged that this strategy aids

in overcoming most of the challenges (see Table 4). Adding detail to a task can help

both mentors and newcomers develop a more holistic picture of its complexity and

solution, which facilitates the assessment of whether a task matches a newcomer

profile. We suggest that tags inform about the tasks’ appropriateness for newcom-

ers in terms of required skills, priority, estimated effort, and difficulty. Although

tagging is an approach recommended by GitHub and OSS project guidelines, some-

times projects do not have the capacity to triage and label tasks. This may lead to

another problem: the lack of (explicitly) available tasks (Prod2.3). When a project

adopts the labeling strategy, it is important to maintain and update the labeled

issues to prevent newcomers from taking on already fixed or outdated issues [84].

Providing automated ways of tagging and better supporting human annotators are

still open research opportunities that could provide great help to mentors and new-

comers [69].

Explore different ways to understand newcomers’ skills. Our results indi-

cate that expertise and skill identification (Prod2.7) is a key challenge for mentors

who recommend tasks to newcomers. The evidence collected here extends the un-

derstanding that awareness of developers’ skills is the foundation for building pro-

ductive teams [27, 78]. Baltes and Diehl [6] presented a theory mapping the main

traits of software developers’ expertise. Mentoring is explicitly presented as a cen-

tral part of the theory, since it helps “building knowledge and thus contributes to

the development of expertise.” This theory also highlights that mentorship is a feed-

back mechanism that may help developers gain task-specific and general knowledge.

Although the theory shines light on the importance of mentorship in knowledge ac-

quisition, the authors of the theory could not find appropriate ways to objectively

assess expertise. Our results echo this evidence, since we noticed that the mentors

did not provide any objective way to assess newcomers’ expertise.

In fact, mentors usually interact with newcomers to collect additional information

to match their current skill level with the skills required for a specific project or

task. This unstructured communication creates a strong mentor-mentee bond and

facilitates the formation of ties that may influence future engagement. This strategy

is in line with the landscape feature of proactive assistance and mentoring culture

stated by Dagenais et al. [21], which was considered by their study as the most influ-

[1]https://github.com/kubernetes/kubernetes/issues

https://github.com/kubernetes/kubernetes/issues


Steinmacher et al. Page 21 of 30

ential in how pleasant and efficient the integration experience was for the newcomer,

and was also mentioned by seven participants as an effective way to reduce social

fear (Prod.1). However, sometimes the gathered information can be subjective and

influenced by low or high levels of self-confidence. Their self-assessment may not be

accurate [6], because “if a person’s pattern of past performance was highly variable

in relation to relatively constant evaluation criteria [they] would not be able to form

a stable assessment of his ability . . . highly variable tasks may not be characterized

by a person as skill task at all but as involving factors beyond his control” [28].

The strategy of directly asking newcomers to identify their skills may also be

impacted by communication issues. The literature points out that professional de-

velopers experience gaps in communication (both written and oral communica-

tion) [62] and negotiation skills [45]. Additionally, the completely remote mentoring

(e-mentoring) approach usually employed in OSS, as opposed to face-to-face inter-

actions, may reduce trust between the parties [86] and likewise decrease communica-

tion effectiveness [13]. Thus, in some cases it may not reduce or eradicate newcomers’

social fears [89], especially in the initial (or introductory) phase of the joining pro-

cess [55]. Miscommunication on text-based channels is common, since context and

expression is often lost [86]. However, as the literature indicates, e-mentoring—a

computer-mediated alternative to the classic face-to-face mentoring—can scale up

mentoring, providing more information to mentees and enabling them to connect

with more people than classic face-to-face mentoring would allow [85]. E-mentoring

has a particular applicability for OSS communities, as the work is conducted in a

distributed way [90].

As several of our interviewees reported, another way to identify existing skills is by

relying on a portfolio built on data from previous interactions with repositories and

technical communities. Indeed, software development leaves traces of development

activities in the repository, which can then be used for inferring the expertise of de-

velopers [20]. Existing tools such as “My GitHub Resume”[2] and “Visual Resume”

[68] may help to assess developers’ skills based on real interactions. However, these

tools are not widely-used by OSS developers. Moreover, sometimes no historic data

of a newcomer’s contributions is available to evaluate expertise. Therefore, mentors

who are unable to promptly identify newcomers’ skills, can instead evaluate them

by giving small tasks to the newcomers. This strategy allows them to explore the

project while they have the chance to evaluate the newcomer’s performance. This

manner of assessing skills may be effective for contextualizing the newcomer’s back-

ground within the project boundaries. However, it may create further issues if the

tasks used for this evaluation are too easy or too complex, including demotivating

newcomers and reducing retention. Therefore, mentors should explore multiple ways

to understand newcomers’ skills.

Create a pathway for newcomer learning and retention. According to our

survey respondents, starting with smaller tasks and following them with more com-

plex tasks is an effective strategy. Creating an adequate path and providing appro-

priate encouragement and support may also help in engaging and retaining new-

comers. Creating these pathways depends not only on the skills of the newcomers,

but on aspects such as developers’ goals, motivations, and availability [69]. One op-

[2]https://resume.github.io/

 https://resume.github.io/
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tion is to provide tasks that require higher competence of a particular skill and then

move on to more complex and broad tasks. Another option is to keep newcomers

working on tasks that fit their current skill set. The choice for the most appropriate

alternative should align with the newcomers’ goals, which requires constant follow-

up from the mentor. The theory of Legitimate Peripheral Participation (LPP) has

been widely adopted and describes how participation, situated learning, and iden-

tity construction are interrelated, and can evolve as a person joins a community of

practice [36]. Instead of processing information in an isolated style, situated learning

occurs though social interactions and puts a strong focus on practicing the acquired

knowledge [23]. Fang et al. [26] suggested that OSS developers’ learning behavior

is situated in their everyday activities and that newcomer retention can occur after

having repeated positive situated learning and identity construction social interac-

tions. The strategy mentioned by our participants of creating an appropriate and

evolutionary pathway of tasks with appropriate encouragement and support is also

aligned with the situated learning of identity construction LPP.

4.3 Implications

Education and Training Personnel : People interested in Education and Training

can make use of our findings to better understand the challenges faced by men-

tors in OSS. When asked whether they had been trained to act as a mentor, all of

our participants answered “no.” Therefore, it is important to offer training on the

skills needed to be a mentor, either in undergraduate level or even in a professional

environment. Moreover, given the number of social challenges revealed by the par-

ticipants, it is important that (future) professionals acquire the proper “soft” skills

that will better prepare them to mentoring. The challenges evidenced here also serve

as a starting point for making instructors aware of what to expect when incorporat-

ing OSS projects in their curricula, which is becoming more common [12, 51, 60].

Online communities: Given the number of challenges mentors face (25), it is im-

portant that communities provide adequate support to those who volunteer or act

as mentors. We found that providing up-to-date and straightforward documenta-

tion of available open issues and precise tagging of available open issues are some

techniques that OSS communities can utilize to support both newcomers and men-

tors. We also identified a set of task recommendation strategies that can be used by

mentors to recommend tasks to newcomers. Tagging the tasks (and keeping them

up-to-date) was frequently recommended. In fact, this strategy is already in place

in several well-established projects, like LibreOffice, Apache Open Office, Mozilla,

Gnome, Media Wiki, and Ubuntu. Moreover, we found that “difference in the de-

vices that mentors and mentees use” is also a challenge. Thus, providing ways to

make it easier to build the system locally is of great benefit to the onboarding

process. A potential solution would be a pre-configured environment, by means of

a Virtual Machine with a built environment [95] or a container management tool,

such as Docker.[3]

Mentors: Mentors can benefit from the set of challenges uncovered in this paper

becoming more aware of what they can expect when dealing with newcomers, and

better prepare themselves for supporting those willing to contribute to or join the

[3]http://www.docker.com

http://www.docker.com
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community. Mentors can also take advantage of the strategies presented in Sec-

tion 3.3, employing them to support newcomers.

Researchers. This research described several challenges and strategies that could

be further investigated and supported. Research is needed to help the community

develop a more precise description of newcomer-friendly tasks. Observational studies

may be conducted to understand what information newcomers look for when select-

ing a task and to provide insights about the dimensions that should become labels.

Information needs and mentoring strategies for newcomers with different learning

styles [14] could also be investigated. In addition, exploring how the newcomers ac-

tually find information may inform machine learning approaches to automatically

suggesting labels for issues. Moreover, identifying better ways to elicit newcomers’

characteristics, evaluate their effectiveness, and propose novel and more effective

methods of evaluating newcomers’ characteristics can be a potential research topic.

Furthermore, future work may focus on investigating how each challenge and strat-

egy influences newcomers with different motivations [33], retention in the project,

and assertiveness in recommended tasks. Understanding motivation and demotiva-

tion factors influencing mentors can also be investigated in future research.

5 Limitations and Threats to Validity
Sampling bias could have affected our survey. However, the survey was widely de-

ployed, receiving 600+ respondents who represented a wide set of demographics

and projects. Nevertheless, although it mirrors the distribution of our population,

we received very few answers from women, which may have contributed for the lack

of statistically significant results when comparing men and women.

Sampling bias can also affect our interviews, including self-selection and social

desirability biases. However, we counteracted this effect by seeking out different

perspectives, inviting people with different profiles and diverse backgrounds and

from various projects. We also acknowledge that the size of our sample (18 inter-

views) can be considered small. However, we continued interviewing until we were

not able to identify any new challenges or strategies in two interviews in a row. The

amount of participants is in line with the anthropology literature, which mentions

that a minimum of 10 knowledgeable people is enough to uncover and understand

the core categories in a study of lived experience [11]. Finding participants for this

study was challenging because mentoring in such non-structured environments can

take place through private, not publicly visible communication channels [24]. To in-

crease the number of respondents in our study, we deployed multiple tactics to reach

mentors, contact survey respondents, as well as reaching out to personal contacts

(and snowballing) and previous contacts with Google Summer of Code mentors,

social media posts, and OSS-related mailing lists. We relied on self-reported expe-

rience in mentoring to select our participants. During the analysis of the interviews

we looked for evidence of their mentoring experience and we could not find any case

for which we identified a mentor with low experience.

Another threat to validity can arise in the qualitative analysis process. However,

to avoid misinterpretation in the qualitative coding of the data, we used the constant

comparison method. As new codes emerged, we compared it with the existing code

set and met frequently with the research team to discuss and clarify the codes.

To increase construct validity, we worked closely with the D&I committee at the
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ASF to craft the survey and interview questions such that it was accessible to the

community.

However, we likely did not discover all possible challenges and strategies or provide

complete explanation of them. We are aware that the OSS universe is vast, and

challenges and strategies can differ according to projects.

Finally, this research focused on OSS settings to gain a deeper understanding of

this specific community. Challenges and strategies may be different for companies,

other online communities, and different types of users. Future research should focus

on analyzing the commonalities and differences among challenges and strategies in

different domains to build generalized models and theories about onboarding and

mentorship in open collaboration communities.

6 Related work
Newcomers joining OSS projects face many challenges [81], and task assignment is

a recurrent hurdle [80]. In the following, we provide more details about the existing

literature related to mentorship in OSS projects, choosing appropriate tasks for

newcomers, and strategies to support task recommendation.

6.1 Mentoring

Mentoring is explored in several domains and activities: in management literature is

a way to help new employee socialization [1, 58, 88] (e.g., helping newcomers under-

standing the company’s processes, the internal culture), and in education (teaching)

literature is a way to help new teachers acclimate [48, 64, 65] and students overcome

learning challenges [18, 34, 52]. For our purposes, a mentor is someone of advanced

rank or experience who guides, teaches, and develops a novice [53]. Some existing lit-

erature analyzes the challenges faced during mentorship. For example, [63] conducts

a literature review analyzing the challenges related to gender in the mentor-mentee

relationship. In the education domain, [48] explores the problems encountered in

mentoring new teachers, while [43] explore the challenges faced by faculty members

while mentoring online doctoral students.

Software Engineering has also taken up mentoring as an object of study [9, 10,

75]. In fact, the importance of mentorship as part of the knowledge acquisition

process for novices is evidenced in the theory of software development expertise

developed by Baltes and Diehl [6]. In closed source settings, formal mentorship is

a common practice to support newcomers [9]. Dagenais et al. [21] reported teams

that proactively mentor newcomers make integration easier.

Formal mentorship in OSS has also been investigated. Some researchers focused

on automatically identifying and recommending mentors [15, 47, 56, 77], claiming

that mentoring benefits newcomers’ onboarding. Fagerholm et al. [24] conducted

a case study to assess the impact of mentoring and found that it significantly im-

proves newcomer onboarding. In addition, Schilling et al. [70] studied the impact of

mentoring on developers’ training and retention and introduced a measure to assess

mentoring capacity to facilitate learning and retention. In contrast, Labuschagne

and Holmes [44], who studied Mozilla, evidenced that onboarding programs may

not result in long-term contributors, even though mentored newcomers considered

the mentorship program valuable. Silva et al. [74] investigated the strategies OSS

projects use to mentor and onboard newcomers in the context of Summer of Code
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programs. Mentorship is adopted by several prominent OSS projects (e.g., Red-

Hat,[4] KDE,[5] Apache,[6] and OpenStack [7]).

Although the literature shows some interest in OSS mentorship and approaches

to support finding an appropriate task for newcomers, to the best of our knowledge

there is no systematic identification of strategies that mentors employ to help new-

comers select their tasks and the challenges they face in this process. The present

work adds to the OSS onboarding and task recommendation literature, as well as

to the scarce literature about mentoring in open collaboration environments.

6.2 Task recommendation

The OSS literature widely reports the dilemma of finding an appropriate task,

because new developers find it challenging to identify bugs that interest them,

match their skill sets, are not duplicates, and are important for the community

[94] [80]. For example, Park and Jensen [57] reported that newcomers need specific

guidance on what to contribute (e.g., open issues, required features, and simple

tasks to start with), while von Krogh et al. [92] reported that communities expect

new participants to find tasks to work on, although they sometimes assign tasks.

The literature also shows that newcomers struggle to find a task [80] while they

often also face an arduous learning curve to handle the technical complexity, given

the lack of domain knowledge or project information available for starters.

Some initiatives aim to support newcomers to find appropriate tasks, like Up

For Grabs,[8] First Timers Only,[9] and Awesome for Beginners,[10] which aim to

aggregate easy issues from several OSS projects. GitHub[11] encourages projects to

tag issues that are easy for newcomers, which is a strategy also used by communities

such as LibreOffice,[12] KDE,[13] and Mozilla. [14]

The literature also includes findings related to recommending and filtering out

tasks. For instance, Cubranic et al. [19] presented Hipikat, a tool that builds a

group memory and recommends source code, email messages, and bug reports to

newcomers. Similarly, Wang and Sarma [94] previously developed a Tesseract ex-

tension that enables newcomers to identify similar bugs through synonym-based

searches and to visually explore a bug’s socio-technical dependencies.

Another way to support task recommendation is through systems that match peo-

ple to tasks. Macdonald and Ounis [46] used a voting heuristic based on analyzing

the modification history of each artifact related to the task. Anvik and Murphy [2]

similarly use machine learning in the project’s history to identify and suggest the

developer most familiar with certain artifacts, identifying this person as an expert.

[4]https://wiki.gnome.org/Newcomers/Mentors
[5]https://community.kde.org/Mentoring
[6]https://community.apache.org/mentoringprogramme.html
[7]https://wiki.openstack.org/wiki/Mentoring
[8]https://up-for-grabs.net
[9]https://www.firsttimersonly.com/
[10]https://github.com/MunGell/awesome-for-beginners
[11]https://help.github.com/articles/helping-new-contributors-find-your-project-with-labels/
[12]https://wiki.documentfoundation.org/Development/EasyHacks
[13]https://community.kde.org/KDE/Junior_Jobs
[14]https://wiki.mozilla.org/Good_first_bug

https://wiki.gnome.org/Newcomers/Mentors
https://community.kde.org/Mentoring
https://community.apache.org/mentoringprogramme.html
https://wiki.openstack.org/wiki/Mentoring
https://up-for-grabs.net
https://www.firsttimersonly.com/
https://github.com/MunGell/awesome-for-beginners
https://help.github.com/articles/helping-new-contributors-find- your-project-with-labels/
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug
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Finally, DebugAdvisor [3] also aims to recommend developers based on expertise

on the source code related to the task.

Although the literature explores strategies for task recommendation in OSS

projects, they rely on extensive manual work to tag the issue tracker, since issue

trackers usually either do not consider newcomers’ skills and interests, or only work

with developers who have previous experience in the project. In this work, we ex-

tend the existing literature by uncovering the strategies mentors use to recommend

appropriate tasks for newcomers.

7 Conclusion
OSS communities frequently rely on mentors to guide newcomers to become long-

term, active contributors. According to our data, contributors are less likely to be

a mentor when they volunteer (not compensated to contribute) and have less than

1 year of experience.

We also identified 25 challenges faced by mentors in OSS projects. Further, we

had a deep investigation of one of those challenges - Difficulty in identifying ap-

propriate tasks for newcomers (ID Pro2 from Table 4). We identified 7 challenges

that mentors face when recommending tasks to newcomers. The identified chal-

lenges range from handling newcomers’ low self-efficacy and understanding their

background to dealing with poor information about the tasks available at hand. We

also identified 13 approaches to recommending tasks for newcomers. These strate-

gies relate to identifying newcomers’ characteristics, scaffolding newcomers’ skill

acquisition, identifying task complexity, identifying skills required to finish a task,

and restructuring task landscape.

To conclude mentorship in OSS is still an under explored research area. Our

results provide initial insights about characteristics of mentors and challenges they

face and strategies they employ, which OSS communities and mentors can leverage

to improve the current state of practice. Providing better support for mentorship

can help to attract more volunteers to this important role and, indirectly, provide

smoother onboarding of newcomers to OSS projects.
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