ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

How Does Core Contributor Disengagement Impact Open Source
Project Activity? A Quasi-Experiment

Yungi Chen
Zhejiang University
Hangzhou, Zhejiang, China
yungichen@zju.edu.cn

Daniel German
University of Victoria
Victoria, BC, Canada

dmg@uvic.ca

Abstract

The sustainability of Open Source Software (OSS) projects often
depends on a small group of core contributors. When these contrib-
utors disengage, projects may face disruption; however, the con-
sequences of such disengagement on OSS contribution workflows
remain underexplored. This paper presents a large-scale quasi-
experimental study quantifying the impact of core contributor
disengagement on pull request (PR) throughput, acceptance rate,
and time to merge. We analyzed over 35 million PRs across 50,804
GitHub repositories, identifying 95,958 disengagement bursts (one
or more core contributors becoming inactive for >365 days within
the same week) involving 174,887 contributors. Using Difference-in-
Differences with matched control groups, we found that the impact
varies substantially with contributor and project characteristics.
Disengagements of contributors with a high share of commits lead
to pronounced declines in throughput and acceptance, while long-
tenured contributors’ disengagements have milder effects on those
metrics but increase merge time, suggesting loss of tacit project
knowledge. These findings provide empirical evidence of how core
contributors’ disengagement influences OSS workflows and high-
light structural factors associated with project resilience.

CCS Concepts

« Software and its engineering — Open source model.

Keywords

Open source software, disengagement, attrition, productivity

ACM Reference Format:

Yunqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca
Trinkenreich. 2026. How Does Core Contributor Disengagement Impact
Open Source Project Activity? A Quasi-Experiment. In 2026 IEEE/ACM 48th
International Conference on Software Engineering (ICSE 26), April 12-18,
2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3744916.3773135

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/26/04

https://doi.org/10.1145/3744916.3773135

Klaas-Jan Stol
Lero and University College Cork
Cork, Ireland
k.stol@ucc.ie

Fabio Santos
Colorado State University
Fort Collins, CO, USA
fabio.deabreusantos@colostate.edu

Bianca Trinkenreich
Colorado State University
Fort Collins, CO, USA
bianca.trinkenreich@colostate.edu

1 Introduction

Open Source Software (OSS) forms the backbone of today’s digital
infrastructure, with an estimated 60% of websites relying on OSS
technologies [40]. Despite their importance, OSS projects are highly
vulnerable to the disengagement of key contributors, which can neg-
atively impact project sustainability [14]. The loss of contributors is
a major concern among OSS maintainers, project, and community
managers, second only to poor code quality [51]. Core developer
turnover has been shown to be a common and often unplanned phe-
nomenon, even in mature ecosystems such as Rust, where over 60%
of Rust modules (called ‘crates’) experienced at least one turnover
event over two years [24]. OSS project communities tend to fol-
low an ‘onion’ structure [16], with most contributors participating
either sporadically or for short periods [4, 13], or with a limited
contribution rate. Only a limited number of core contributors are
deeply involved in the daily development process. This dependency
on a smaller number of core developers represents a major risk to
OSS projects. Nearly two-thirds of 133 popular GitHub projects rely
on only one or two developers to survive [3]. In a follow-up study,
16% of the sampled projects were abandoned by maintainers, and
59% of those did not survive [2].

Nearly half of OSS project failures can be attributed to internal
team issues, such as contributor turnover and the loss of critical
knowledge [14]. When core contributors—sometimes referred to
as ‘truck factor’ contributors due to their indispensable roles [87]—
leave a project, the impact can be severe. Over half of projects
fail to recover from the departure of such contributors [2]. Core
contributor turnover has been associated with declines in team
productivity [55] and code quality [29, 72].

Although studies have investigated abandonment [53], early
signs of disengagement from OSS projects [59], and the trade-off
between productivity and resilience in the aftermath of these exits
[66], there is a lack of understanding regarding the prevalence
of core disengagement and its consequences for project activities.
Despite being a common event, there is limited awareness of the
potential long-term effects of disengagement. This highlights the
need for systematic investigations into how such disengagements
affect project-level collaboration and activity. Thus, we pose the
following two research questions:

RQ1 What is the prevalence of core contributor disengage-
ment?

https://doi.org/10.1145/3744916.3773135
https://doi.org/10.1145/3744916.3773135
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773135

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

RQ2 What impact does disengagement of core contributors
have on remaining contributors’ project activity?

Further, any consequences likely vary based on the profile of
disengaged contributors, and the projects they disengage from.
This paper presents the results of a quasi-experiment, involving
a sample of over 50,000 OSS projects, investigating the trends of
disengagement among core contributors over the past decade, as
well as the impact of core contributors’ disengagement on the
project activities of remaining contributors. A replication package
for this study is available online [11].

In the remainder of this paper, we discuss related work (Sec. 2),
our research design (Sec. 3), followed by the results to RQ1 (Sec. 4)
and RQ2 (Sec. 5). After discussing threats to validity (Sec. 6), we
conclude this paper with a discussion of the results (Sec. 7).

2 Related Work

2.1 Reasons for Contributor Turnover

A wide variety of factors can contribute to disengagement of open
source contributors. For some, a reduced level of interest to continue
contributing can cause developers to disengage [41, 54]. For others,
major life changes such as a change of job can cause contributors
to disengage, particularly when the new role is incompatible with
contributing to OSS (due to a lack of time or otherwise) [39, 41,
54, 70]. Other reasons include governance issues in an OSS project
[41], frustration with uncivil and toxic behaviors [23, 52], a lack of
inclusiveness experiences [22, 30, 60], or lack of peer support [54].

Several studies have explored behavioral signals of upcoming
disengagement and found that early indicators, such as bursty
contributions, limited social interactions, and low integration, can
forecast attrition [59, 89, 93].

2.2 Consequences of Contributor Turnover

The consequences of the disengagement of contributors, especially
the most experienced, can have a negative impact on the sustainabil-
ity of the project. One issue that has been explored by the literature
is the so-called ‘truck factor’ [3, 15, 28, 63]. A high truck factor
indicates a resilient project with well-distributed knowledge, while
a low truck factor signals fragility due to reliance on a few key
contributors, especially if no new developers join a project [2].

A high turnover in OSS projects has negative consequences, in-
cluding knowledge loss [43, 64], decreased software quality [29],
decreased productivity [66], and lower survival probability [43, 72].
Turnover within software teams has also been associated with a
significant increase in customer-reported defects due to loss of
knowledge and experience [55], while also impacting project sur-
vival [43, 72], as approximately 80% of open source projects fail
due to contributor turnover related issues [72]. Recent research
[24] investigated the challenges of core developers’ turnover in
the Rust package ecosystem, including delayed updates and confu-
sion over responsibilities. Our work complements this line of work
by quantitatively estimating the causal impact of core contributor
disengagement on project activity across multiple GitHub ecosys-
tems, including metrics such as pull request (PR) throughput, PR
acceptance rate, and PR time to merge.

Few studies in the Software Engineering domain have been using
causal inference methods to assess the impact of core developer

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

disengagement on project productivity [66]. Although contributor
breaks have been noted [4, 7, 41], the phenomenon of a disengage-
ment burst, where multiple core contributors leave within a short
period, has hitherto not been studied. This study goes beyond es-
timating an average effect to examine the heterogeneous impacts
on project PR workflow activities across different core contributor
and repository characteristics, thereby providing a more nuanced
and actionable perspective on the problem of core contributor dis-
engagement.

3 Research Design

In this section we lay out our research design.

3.1 Causal Inference Framework

In order to understand how much of the change in project activity
is due to developer disengagement, we require a causal inference
approach. This allows us to draw conclusions on cause and ef-
fect, rather than only establishing associations between variables.
Specifically, to empirically estimate the causal impact of core con-
tributor disengagement bursts on GitHub project activities, we use
difference-in-differences (DID) models [88] to investigate the effects
of disengagement on project activities. DID models are widely used
in econometrics and quantitative research in the social sciences
[1, 9, 42, 65] and increasingly adopted in software engineering re-
search [10, 25, 50, 66]. DID is a technique to look at the ‘effect’ of
an ‘intervention’ from observational study data to mimic an ex-
perimental research design. It considers a ‘treatment’ group and a
‘control’ group.! For both, changes in mean values are calculated.
In this study, we considered those projects that suffered from core
contributors disengaging as the ‘treatment’ group, and compared
changes in activity against projects that did not suffer from disen-
gaged core contributors (the ‘control’ group). A key requirement
for DID to be valid is the parallel trends assumption: if the disen-
gagement had not occurred, the treatment group’s activity would
have followed a similar trend as the control group. Although we
cannot directly test this counterfactual situation, we carefully se-
lected control groups based on pre-treatment observable trends to
ensure they share similar trends with the treatment group before
the disengagement burst.

The DID technique is usually applied to a single event (treat-
ment) at one point in time. Since disengagement events happen at
different times across repositories in the real world, we adopt a DID
design with what is called variations in treatment timing [35], to
‘align’ these events to a reference point. With such alignment, we
can use the regression analysis as a ‘traditional’ DID and estimate
heterogeneous effects of contributor and project characteristics that
may moderate the impact of disengagement bursts (one or more
core contributors becoming inactive within the same week) [19].

3.2 Data Collection and Preparation

To create the dataset for this study, we used SEART-GHS [18], which
is a searchable dataset and tool that indexes GitHub projects based
on metadata and metrics. We applied the following filtering criteria.
We selected repositories that fulfilled the following criteria:

!Because this was not a controlled experiment but rather a quasi-experiment (or
‘natural’ experiment), we quote the terms ‘treatment, ‘control, and ‘intervention’

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

o The project was created before November 2023, ensuring at
least one year of development history;

e has at least 100 stars, indicating popularity;

e is not a fork project, ensuring originality;

o has a valid license, ensuring legal clarity for usage and con-
tribution;

e contains open issues, indicating active maintenance and com-
munity engagement;

e has pull requests, reflecting collaborative development;

e includes contributions from at least 10 commit authors, demon-
strating team involvement;

e has over 100 commits, indicating enough development activ-
ity.

From this initial dataset, we selected projects using one of the 10
most popular programming languages [33] as their main language:
Python, JavaScript, Java, TypeScript, C++, Golang, C#, C, PHP, and
Rust. Following prior work [94], we next excluded repositories
potentially used for document storage or course submissions by
filtering out projects with keywords such as “homework,” “course,”
and “awesome” in their names.

For each project, we used the GitHub API to collect its history
of project activities (including commits and pull requests) until
February 2025. Projects whose repositories were deleted or made
private during data collection were excluded, as their data could
not be fetched. We removed commits from bots as they were iden-
tified by filtering login or username containing “bot,” followed by
manual validation. We then processed author information for com-
mits lacking GitHub logins or with aliases by aggregating similar
(name, email) tuples based on established methods [12, 34, 48, 85]
to disambiguate author names.

Overall, the dataset used for this study comprised 50,804 projects,
containing 35,804,751 pull requests (median per project: 175) and
106,812,303 commits (median per project: 715) from 2011 to Febru-
ary 2025. However, because our disengagement detection requires
observing at least 12 months of inactivity, we would not be able
to identify disengagements starting after Q1/2024. As a result, all
trend plots have a cut-off point to show disengagement data only
until the end of 2023.

3.3 Treatment and Control Groups

3.3.1 Treatment group definition. The treatment event is defined as
a disengagement burst, which we define as one or more core contrib-
utors becoming inactive for >365 days within the same week. We
tested several other disengagement thresholds (180, 270, and 450
days) to assess the sensitivity of the choice of this specific threshold
(see the appendix [11]), and we found consistent results. Figure 1
shows a visual overview of the procedure to detect developer dis-
engagement.

Identifying core contributors. We employed a commit-based heuris-
tic method to mark those who made the top 80% commits over the
project’s entire lifecycle as core contributors; this is a much-used
definition [7, 17, 27, 56]. We discuss potential threats to validity of
this definition later. We excluded contributors who stayed less than
30 days (time from first to last commit) or contributed fewer than
10 commits.

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

p
) ¥
t >,
/> Ot boO-tpOmtrrrrinens: >0 (B;fak)
) P1 P2 P3 ~lfov
Contributor A T
\. A 2
r Disengagement Event
Disengagement Period A (Break >365 days)
8/ 7 S »-O- .
> | Starts at Day X | H
Contributor B A\
Di t Period B B
e v see e e PO Disengagement Burst
</> | Starts at Day Y | (X, Y in a 7-day window)
Contributor C
J

Figure 1: Operationalization of disengagement burst

Defining contributor engagement. We define a core contributor
as being engaged in a project from the moment they have authored
a first commit to the project [7].

Detecting inactive periods. To understand unique commit rhythms
for each contributor, we first identified the pauses (intervals in
days between consecutive commit days) for each contributor, cre-
ating an array of pauses P =< p1, pa, ..., pp >. Following previous
research [7], we identified longer-than-usual pauses as breaks by
calculating contributor-specific thresholds Ty, using the far out
values approach [81] to detect outliers in a distribution: T, =
Q3(P) + 3 X IQR, where Q1(P) is the first quartile of the distribu-
tion, Q3 (P) is the third quartile, and IQR = Q3(P) — Q1(P) is the
interquartile range. While T, characterizes individual rhythms
for each contributor, breaks are not directly used to define the dis-
engagement ‘event’ for our DID analysis. We defined breaks longer
than 365 days as disengagement events and merged any occurring
within a 7-day window into a single event.

Compiling disengagement bursts. To isolate the impact of a single
disengagement burst and avoid confounding effects from nearby
bursts, we focused exclusively on temporally isolated bursts. We
chose bursts that were surrounded by a 12-week “buffer zone,”
which means no other bursts occurred for 12 weeks before or after
the eligible burst in the same repository. To validate this approach,
we performed a sensitivity analysis with several shorter durations of
“buffer zone” (e.g., 6, 8, or 10 weeks) and found our main conclusions
remained consistent (see the appendix [11]).

After applying these definitions and filters, our dataset com-
prised 95,958 eligible disengagement bursts (with 5,298 of them
aggregated from multiple disengagements occurring within a week)
from 174,887 individual core contributor disengagements (median
3 per project) across 35,229 of the original 50,804 projects.

3.3.2 Control Group Construction. To construct a valid control
group for each treatment group at time ¢, we used propensity score
matching (PSM) [8] to ensure the parallel trends assumption. PSM
helps create comparable groups by matching treated units with
control units that had a similar probability (propensity score) of
receiving the treatment, based on pre-treatment observational char-
acteristics. Specifically, for each treated repository experiencing
a disengagement burst starting in week ¢, we identify potential
control repositories that did not experience a burst in week ¢t or
within the surrounding 12-week window. Following previous stud-
ies [25, 50], we used a logistic regression model to fit the probability
of a repository having core contributors disengaged by using the

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

—— Treatment

0.89

0.88

0.87

Mean Value

10 -10

~10 0
Relativized Week

(a) PR Throughput

—— Control

0
Relativized Week

(b) PR Accept Rate

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Treatment Happened

400

200

~10 0
Relativized Week

10 10

(c) Time to Merge

Figure 2: Pre-treatment trends across outcome variables to support the parallel trend assumption

log of relative increase (IP;;) in outcome variables and the absolute
number of outcome variables (PS;,_) for PR throughput, PR accep-
tance rate, and PR time-to-merge over the 12 weeks prior to week
t. We used the log-transform to stabilize variance, handle skewed
changes, and make relative increases interpretable, as proportional
shifts happen across projects of different scales. The log relative
increase is computed as:

yit+1

Ii; =1lo
" & Yi(e-1) +1

where y;; is the outcome variable for repository i in week t. We
add one to both the numerator and the denominator to handle zero
counts. The propensity score is calculated as follows:

12 12
1
PStiC = U(Z IPi(t—j) + E Z Pi(t—j))
Jj=1 Jj=1

where PS;,, is the probability repository i in cohort ¢ has core
contributors disengaged at time t. IP;(;_;y is the relative increase
of a given outcome variable of project activity for repository i,
and P;(;_jy is the summed number of that outcome variable for

repository i, on the jt# week before treatment, respectively. We
use the o as a ‘sigmoid’ function to map the probability to a range
between 0 and 1.

For each treated repository (that suffered from disengaged core
contributors), we matched up to five control repositories with the
closest propensity scores (1:5 matching); this is to make sure that
control repositories have, on average, the same pre-treatment trend
in outcome variables as the treatment group [8]. Figure 2 displays
average weekly trends for (a) PR throughput, (b) PR acceptance rate,
and (c) time-to-merge for treatment (blue line) and matched control
(green line) groups relative to the disengagement burst week with
95% confidence interval error bands. These graphs show the pre-
and post-treatment trend of outcome variables in both treatment
and control groups, thus supporting the parallel trends assumption
of the DID technique.

3.4 Dependent Variables

Core contributors play a central role in maintaining projects and
ensuring code contributions are processed efficiently. When core

contributors disengage (the event that serves as independent vari-
able), we expect to see disruptions in the project’s ability to review,
respond to, and integrate contributions. We focus on three metrics
that directly reflect these activities.

Pull Request (PR) Throughput. PR throughput captures the vol-
ume of PRs closed (either merged or rejected) within a given period.
A drop in throughput may signal that fewer PRs are being pro-
cessed, suggesting slower overall project activity. Previously, this
metric was used as an indicator of project responsiveness and vital-
ity [36, 84]. In our model, PR Throughput is defined as the number
of PRs successfully merged on a weekly basis [47, 61, 74, 86].

Pull Request Acceptance Rate. The PR acceptance rate reflects
the proportion of PRs that are successfully merged. A declining
acceptance rate could imply that, in the absence of active core devel-
opers, contributions are more frequently left unreviewed or rejected
due to lack of oversight, unclear direction, or insufficient integra-
tion support. It may also reflect a rise in gatekeeping or stalled
decision-making processes that core developers usually facilitate.
In our model, PR Acceptance Rate is defined as the proportion of PRs
merged out of all pull requests that were opened and then either
closed or merged on a weekly basis [20, 21, 38, 73, 76, 78, 92].

Time-to-Merge. Time-to-Merge measures how long it takes for a
PR to be merged. As core developers play a key role in reviewing
and merging contributions, their disengagement leads to less ca-
pacity within the project to process PRs, which is likely to result in
longer review cycles, increased waiting times, or backlog accumu-
lation. Prior work [79] has linked longer time to merge to reviewer
unavailability and bottlenecks in collaborative workflows. In our
model, Time To Merge is defined as the average time (in minutes)
between when a PR is opened and when it is merged during the
week [5, 36, 38, 49, 73, 74, 78, 86, 91]

Together, these metrics provide a triangulated view of project
responsiveness and collaborative efficiency. They are observable,
widely adopted in OSS analytics, and offer a reliable proxy for as-
sessing the operational impact of core developer disengagement. By
focusing on these three, we capture volume (throughput), decision
tendencies (acceptance rate), and efficiency (merge time), which
can be used as signals of shifting project health.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

3.5 Moderating Variables

3.5.1 Disengaged Core Contributor Characteristics. We consider
three characteristics of disengaged core contributors in the disen-
gagement burst.

o Tenure: Average duration (in days) from first commit to last
commit of contributors in the burst. Tenure can be inter-
preted as a proxy for contributor experience and project
knowledge, even when “lurking” (i.e. not contributing). Sim-
ply a ‘presence’ within the community and interactions (e.g.
mailing lists, IRC or Slack channels) may expose that devel-
oper to specific project knowledge that would be lost upon
their departure.

e Commit Percentage: Summed proportion of commits relative
to the total number of project commits by contributors in
the burst. Commit percentage indicates how big a role the
departed core contributor played in volume of commits that
were made. While a rough measure, as commit size tends to
vary considerably, we argue that, overall, these variations
apply generally to most contributors.

o Number of Commits: Total number of commits made by con-
tributors in the burst. Similar to commit percentage, but the
number of commits represents absolute activity, whereas
commit percentage represents activity in relation to others’.

3.5.2 Repository Characteristics. We consider the following treat-
ment repository characteristics until the time of the disengagement
burst.

e Number of Commits: Total number of commits in the project
up to the point of burst. This is an indicator of overall activity
within a project.

e Number of Contributors: Total number of contributors in the
project up to the point of burst. This is an indicator of the size
of the project’s community: the effect of core contributors
leaving a small project (i.e. with a small developer commu-
nity) might be larger than when there are many contributors
left who could potentially ‘step up’ A project’s survival rate
is positively linked to its number of contributors [67].

o Project Age: Age of the project (in days) since the first commit
up to the point of disengagement. Projects that have been
active for a longer time are more likely to continue to survive
[67].

o Newcomer Count: Number of new contributors who made
their first commit to the project within 12 weeks after the
disengagement happened.

o Main Language: Primary programming language of the repos-
itory (10 categories: C, C#, C++, Go, Java, JavaScript, PHP,
Python, Rust, and TypeScript). The popularity of languages
changes over time, with some becoming less popular (e.g.
PHP), while others are becoming very popular at the time of
this study (e.g. Go and Rust).

3.6 Control Variables

Control variables are included in the regression models (Equations
(1) and (2), shown in the next section) to account for time-varying
factors:

e Project Commits: Number of commits made to the repository.

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

o Project Contributors: Number of contributors who made at
least one commit to the repository.

e Project Age: Number of days since the first commit in the
project.

We briefly note the difference between control variables and sim-
ilarly named repository characteristics. Repository characteristics
are fixed snapshot measurements taken prior to the disengagement
event of the treatment repository. For each cohort, the character-
istics, such as project commits or ages, are assigned based on the
treatment repository value at that point, and they remain constant
within each pair. In contrast, control variables can differ not only be-
tween repositories within the same cohort, but also across different
time points for the same repository.

3.7 Model Specification

We refer to all the pre- and post-treatment observations for a given
treatment and corresponding control group as a cohort. Our analysis
is based on weekly observational data.

3.7.1 Average Treatment Effect (ATE) Estimation. We set our first
regression model to examine the general average causal effect of
core contributor disengagement burst on project activities as below:

Yite = PoTreatic X Postyc + f1Treatic + PaPostsc
+ Xitcﬂ3 + Yic + Qic (1)

Yitc represents the outcome variable for repository i at week ¢t in
cohort c. Treat;. is a binary indicator for whether repository i is the
treatment repository within cohort c. Post;. is a binary indicator
for whether week t is in the post-treatment period for cohort c. Xj¢¢
is a vector of time-varying control variables (i.e., project commits,
project contributors, and project age) for repository i at week ¢ in
cohort ¢, with 3 being the corresponding vector of coefficients.
Ytc is “time-cohort” and «; is “repository-cohort” random effects
that capture nested variations specific to the repository between
cohorts. The coefficient of interest is ffy, the DID estimator to show
the average change in outcome for the treatment repositories post-
disengagement, compared to the counterfactual trend estimated
from its control repository pairs.

3.7.2 Heterogeneous Effect Estimation. To understand if certain
types of projects or contributors are more resilient or vulnerable
to disengagement, we investigate how this effect varies based on
specific characteristics of the repository or the disengaged core
contributor(s). To achieve this, we extend the basic DID model by
incorporating interaction terms between the main DID estimator
Treat;. X Post;. and the characteristics of interest Z;. measured
at the time of the disengagement burst, forming a Difference-in-
Difference-in-Differences (DDD) analysis [90]. The model is speci-
fied as follows:

Yite = By Treatic X Postsc X Zic + 1 Treatic+
PoPostic + Xite s + Yic + aic (2)

where the interaction term Treat;jc X Post;c X Zjc ensures that the
characteristics of the repository or disengaged core contributor(s)
will only affect the value of fitted outcome variables post-treatment.
The coefficient vector B, should be interpreted as the moderating
effect of those characteristics on the outcome variables.

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

To analyze the categorical predictor project_main_language in
our models, we employed sum contrast coding (also known as
effects coding). The core principle of this method is to compare
the effect of each level against the grand mean of all levels for
that variable [71]. This approach is more suitable than R’s default
treatment contrast when a study lacks a natural control or base-
line group, and the goal is to investigate the performance of each
category relative to the overall trend. The coefficients for our speci-
fied reference level (JavaScript) are not explicitly shown in the
model output, as they are implicitly defined by the sum-to-zero
constraint.

3.7.3 Model Validation. When estimating regressions, we take
standard precautions such as log-transforming skewed variables to
reduce hetero-scedasticity [32] and checking for multi-collinearity
using the variance inflation factor [77]. We report marginal (R, -
variance explained by fixed effects) and conditional (R? - variance
explained by both fixed and random effects) coefficients of determi-
nation as goodness-of-fit measures for generalized mixed-effects
models [44, 57].

4 Prevalence of Core Contributor
Disengagement in the Past Decade

To answer RQ1 (What is the prevalence of core contributor disen-
gagement?), we report trends of core contributors engaged and
disengaged in the data sample from 2011-2023.

4.1 Core Contributor (Dis)Engagement

Figure 3 shows the trends (on a quarterly basis) of new engaged
(blue) and disengaged core contributors (red), as well as the distri-
butions across projects as a scatterplot. The number of new core
contributors rose from around 1,000 in Q1/2011 to over 2,500 by
Q1/2014. It then remained relatively stable between 2,500 and 3,500
from 2014 to Q3/2020 before dropping to 1,163 in Q4/2023, return-
ing to levels seen in 2011. Meanwhile, quarterly disengagements
started with just 248 (25% of the engagements), peaked at 3,389
in Q2/2021, and then fell to 1,813 in Q4/2023, about 1.6 times the
number of newcomers.

— Engagement

-~ Disengagement

60

IN
o

Count per Repository

N
o

0
B B 9Pt 9P g® g R 0 0 > I

Figure 3: Trend of core contributor disengagement vs. en-
gagement, 2011 to 2023 (right axis). Scatter plots (left axis)
show the count of contributors (engaged and disengaged) per
repository.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Comparing engagement and disengagement of core contribu-
tors overall, we find that from early 2015 to mid-2020, more core
contributors disengaged, while engagement remained stable from
Q1/2014 to Q3/2020. Although disengagement increased during
this period, the number of core contributors joining still outpaced
those leaving until Q3/2020. This means the overall pool of core
contributors grew from 2015 to Q3/2020 with a slowing pace. After
Q3/2020, both engagement and disengagement numbers declined.
However, in this period, the number of disengagement consistently
exceeded engagement, indicating that the overall number of core
contributors started to reduce after Q3/2020. The timing of this
turning point coincides with the global aftermath of the first wave
of the COVID-19 pandemic. This period introduced sustained stres-
sors: remote work fatigue, increased caregiving responsibilities,
job insecurity, and mental health challenges [58]. While some con-
tributors may have initially increased OSS activity during early
lockdowns (e.g., engagement peaks in Q2/2020), the longer-term
pressures of the pandemic may have led to burnout and withdrawal
from volunteer-driven communities by the end of 2020.

Beyond these general trends, we also examined the distribution
of engagement and disengaged core contributors on a per-project
basis, as shown by the blue and red scatter plot in Figure 3. The
vast majority of projects see one or two core contributors joining
or leaving per quarter. However, some outlier projects have more
than 10 (even over 100) core contributors gained or lost within a
single quarter, potentially significantly impacting project activities.

4.2 Trends across GitHub Repositories Based on
Project Characteristics

We segmented the sample by three project characteristics. First,
main project language: different programming languages have dif-
ferent contributor pool sizes, are associated with different levels
of software code quality [62], and project popularity [6]. Second,
project age: the code growth curve of OSS projects that typically
starts rapidly, then slows and levels off as projects mature and re-
quire less effort to add features [45, 46, 80, 82]. As a project ages,
it may enter into different patterns of engagement and disengage-
ment. Due to space constraints, we only present representative
figures for these dimensions. The full set of plots is available in the
appendix [11].

4.2.1 Trends by main project language. Examination of the plots by
main language reveals three trends of core contributor engagement
and disengagement across different programming languages in our
dataset: growth, stability, and attrition.

First, a trend of growth, i.e., a net growth of core contributor pool
for Go, Rust, and PHP projects. Rust (see Figure 4(c)) displayed a
sustained high level of engagement relative to disengagement, with
engagement peaking around Q2/2022 before declining, though it
remained higher than disengagement.

Second, a trend of stability can be identified when the numbers
of engaged and disengaged are roughly commensurate, resulting
in a relatively stable contributor pool size over time. This trend is
evident in Python, C++, and TypeScript projects. In Python projects
(see Figure 4(b)), this shift from net inflow to a balance between
engagement and disengagement is noted around Q4/2020.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Third, a trend of attrition can be observed when the number of
disengaging core contributors surpasses new engagements from
some time points, implying a net decrease in core contributors.
This is observable in projects with C, C#, Java, and JavaScript. For
example, for C projects (see Figure 4(a)) the shift occurred after 2016
when disengagement consistently exceeded engagement thereafter.

4.2.2 Trends by project age. Project age is a critical factor in OSS
disengagement [2]. We separate project age into 4 groups: younger
than 1 year, 1-2 years, 2—-4 years, and older than 4 years.

Projects in the ‘<1 year’ and ‘1-2 years’ age groups are usually at
the initial stage of the project ‘lifecycle, and generally experience a
consistent net inflow of core contributors. Projects in the ‘<1-year’
group, as displayed in Fig. 4(d), show a net inflow with engagement
consistently higher than disengagement. Peak engagement for this
group was observed around Q2/2020. This inflow period extends to
the ‘1-2 years’ age group, as shown in Fig. 4(e), although the gap
between engagement and disengagement is narrower than the ‘<1
year’ group, and engagement started to decline after Q4/2018. This
indicates that while both younger categories attract core contrib-
utors, the number of net core contributor inflow is greater in the
earliest stages of a project.

A transition appears for ‘2-4 years’ projects (Fig. 4(f)); the dy-
namics shift towards a more precarious balance. While there are
periods of net inflow, particularly before 2017, the periods after 2018
show that disengagement approaches or even exceeds engagement.
Overall, projects in this age group begin to show signs of potential
net attrition.

Finally, projects older than 4 years (Fig. 4(g)), which we may
call long-established projects, exhibit an apparent challenge of sus-
tainability. The number of disengaged core contributors markedly
and consistently exceeds new engagements. This sustained loss,
particularly after 2017, reveals the challenge long-running projects
may face in maintaining or attracting core contributors.

Observation 1: OSS projects have been following different tra-
jectories in core contributor engagement. Ecosystems like Rust,
Go, and PHP consistently attracted more core contributors than
they lost, while others, such as JavaScript, Java, C, and C#, faced
sustained losses. Younger projects (<1 year) have been attracting
more core contributors than they lose. As projects age (1-4 years),
gains and losses become more balanced. In projects older than 4
years, disengagement more often exceeds engagement, indicating
greater retention challenges in older projects.

Given this widespread phenomenon of core contributor disengage-
ment, it is important to understand its potential effects. Therefore,
we now shift our focus to understanding the effects of such disen-
gagements on project activities of those contributors who stayed.

5 Impact of Core Contributor Disengagement
on Project Activity

To answer RQ2 (What impact does disengagement of core contributors
have on remaining contributors’ project activity?), we use difference-
in-differences (DID) models (see Sec. 3) to investigate the effects of
disengagement on project activities. We started with the general
effects due to the disengagement of core developers, as detailed

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

in Table 1. Our primary focus is the two-way interaction term
(Is treated group: Is post-treatment), which represents the esti-
mated effect on the treatment group (i.e., those projects that suffered
from disengaged core contributors) during the post-treatment pe-
riod. Note that the dependent variable is log-scaled, coefficients
can be interpreted as an approximate percentage of increase. On
average projects exhibited approximately 10% drop in the number
of PR accepted (Table 1, Model 1, pr_throughput, p = —0.099, p <
.001) and a slight but significant, about 0.3% decrease in the rate
at which PRs are accepted (Table 1, Model 2, pr_accept_rate, f =
—0.003, p < .001) over the following 12 weeks. However, the story
does not end there. For those PRs that are accepted, the process
appears to speed up, with about 4% reduction in the average time
taken to merge them (Table 1, Model 3, time_to_merge, B = —0.043,
p < -001). This suggests that while losing core contributors slows
down overall PR activities’ flow and reduces PR acceptance rate,
remaining team members appear to be processing the PRs more
rapidly.

While the general effects of disengagement revealed significant
disruptions to PR activity following the disengagement of core
contributors, this general analysis does not distinguish between
different project and contributor contexts. To develop a better un-
derstanding of what factors might moderate these effects, we in-
vestigated the influence of core contributor characteristics and
repository characteristics.

5.1 Moderating Disengagement Effects

We segmented the analysis of the consequences of disengagement
according to two groups of moderating variables (described in
Sec. 3.5): core contributor characteristics (i.e., tenure, commit per-
centage, number of commits) and repository characteristics. (i.e.,
number of commits, number of contributors, age, main language)
act as interacting moderators, potentially altering the strength of
the previously observed disengagement effects.

We analyzed 3-way interaction terms with DDD models [90]
from Equation (2), which allows us to check if the impact of dis-
engagement (the difference in outcomes between the ‘treated’ and
‘control’ groups after disengagement) changes significantly when
a specific contributor or repository characteristic is concurrently
considered. For example, does the drop in PR throughput vary de-
pending on the tenure of the departed core contributor? Table 2
presents the results of this segmented analysis (see Models 4-6).

5.1.1 Moderating Effects of Disengaged Core Contributor Charac-
teristics. We examined the moderating influence of three character-
istics of disengaged core contributors: PROJECT TENURE, COMMIT
PERCENTAGE OF THE PROJECT’S TOTAL COMMITS, and NUMBER OF
coMMITS (see ‘Core Contributor Characteristics’ in Table 2).

Longer tenure lessens drop in PR throughput and acceptance rates,
but increases the time to merge. As Table 2 shows, when a core
contributor with longer tenure leaves, projects show resilience. The
usual drop in PR throughput is significantly smaller (f = .041, p
< .001, Model 4), and the PR acceptance rate loss is also slightly
mitigated (f = .001, p < 0.01, Model 5). However, the longer core
contributors have stayed, their disengagement lengthens the time
required to merge PRs (B = .025, p < .001, Model 6). This could

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

—— Engagement -

a) c (b)

By Main Language

(d) < 1 year (e) 1-2 years

By Project Age

.
At e,
1 -

s \ o
B 1L B -
B P i 1

B P SR S N

Disengagement

Python

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

(c) Rust

B R S N

(f) 2-4 years (9) > 4 years
o4
S -
N Fua’
S e Y <
- h \ V
S . L
N L S
s ~
O - y .
& At
§ Al
sl W
& |‘"I} v - &
™ :
= Q Q - - o

B R R X B 9 g P P

Figure 4: Core contributor (dis)engagement trends across C, Python, and Rust, as well as per age category. The histograms show
the number of repositories for which the total number of (dis)engaged core contributors were calculated at each point in time.

Table 1: General effect of core contributor disengagement on project activity

Model 1 Model 2 Model 3
Outcome (log) pr_throughput pr_accept_rate time_to_merge
Main Treatment Effects
Is post-treatment 0.721*** 0.000 —0.063***
Is treated group —-0.067*"* —0.002** 0.153***
Is treated group : Is post-treatment —0.099*** —0.003"** —0.043"**
Controls (log)
project commits 0.268*** 0.006™** 0.003
project contributors 0.326™* —0.025*** 0.470™**
project age —-0.213"* 0.005*** 0.037***
Number of observations 3,482,133 1,372,097 1,372,097
R2, (RY) 0.26 (0.66) 0.02 (0.27) 0.08 (0.37)

Note: * p < 0.05; " p < 0.01; *** p < 0.001

suggest that, while overall throughput and acceptance remain rela-
tively stable, replacing a long-tenured core contributor’s specialized
knowledge of the merge process takes time.

Higher commit percentage worsens the loss in PR throughput and
PR acceptance rate, but reduces the time to merge. Losing a core con-
tributor with a larger portion of the project’s commits significantly
reduces PR throughput (f = —0.024, p < .001, Model 4), and reduces
the PR acceptance rate, making approvals more difficult (§ = —0.003,
p < .001, Model 5). Nevertheless, a higher commit percentage from
the disengaged contributor is linked to a shorter time to merge for
PRs (B = —0.020, p < .001, Model 6).

Departure of a core contributor with a higher commit count ex-
acerbates PR throughput loss but has no detected impact on other
activities. Furthermore, a higher number of commits by the dis-
engaged core contributor significantly causes a greater reduction
in PR throughput (= —0.020, p < .001, Model 4). However, the

number of commits does not appear to significantly moderate the
PR acceptance rate or the time to merge, as these effects are not
statistically significant.

Observation 2: Contributor characteristics significantly shape
how disengagement impacts project activity. The loss of a con-
tributor with a high share of commits leads to a sharper decline
in PR throughput and acceptance rate, alongside faster merge
times. In contrast, losing a long-tenured contributor results in
milder declines in throughput and acceptance rate but still accel-
erates merging. A higher total number of commits is associated
only with reduced throughput, indicating that volume of past
contributions alone is a weaker predictor of disruption.

5.1.2 Moderating Effects of Repository Characteristics. We exam-
ined the moderating influence of different repository characteristics

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

Table 2: Repository and core contributor characteristics as moderators of the effect of core contributor disengagement

Outcome (log)

Model 4 Model 5 Model 6

pr_throughput pr_accept_rate time_to_merge

Core Contributor Characteristics (Sec. 5.1.1)!

Tenure (log) 0.041™** 0.001** 0.025™**
Commit Percentage (log) —0.024*** —0.003*** —-0.020***
#Commits (log) —0.020*** 0.000 —0.001
Repository Characteristics (Sec. 5.1.2)!

#Commits before treatment (log) 0.020™* 0.000 0.063"**
#Contributors before treatment (log) —0.003 —0.001 —0.050***
Project Age before treatment (log) —-0.015*** 0.000 —0.037***
#Newcomers after treatment (log) 0.0117* —0.001* 0.013***
MainLanguage-JavaScript (Reference)

MainLanguage-C++ —0.058*** —0.004*** —0.095"**
MainLanguage-C 0.019™** 0.001 0.015
MainLanguage-C# 0.051*** 0.006™** 0.039
MainLanguage-Go —-0.010*" 0.002* 0.046™*
MainLanguage-Java —0.006" —0.002** 0.037***
MainLanguage-PHP —0.019*** —0.002 —0.006
MainLanguage-Python 0.017*** 0.001 —0.036"*"
MainLanguage-Rust —0.062*** 0.000 —0.024
MainLanguage-TypeScript 0.078™** 0.001 0.045
Controls (log)

Project commits 0.265*** 0.005*** —-0.011**
Project contributors 0.322"** —0.024*** 0.478**
Project age —-0.207*** 0.005™** 0.042***
Number of observations 3,482,133 1,372,097 1,372,097
R2, (RY) 0.26 (0.66) 0.02 (0.27) 0.08 (0.37)

1 All are 3-way interaction terms with Is treated group? : Is post-treatment?, omitted for clarity.

Note: * p < 0.05; ** p < 0.01; ™" p < 0.001

(i.e., number of commits, contributors, age, newcomers after dis-
engagement, and main programming language) on PR throughput,
acceptance rate, and time to merge (see Table 2).

Projects Commit Count. Projects with more commits experienced
a small but significant increase in PR throughput after core con-
tributor disengagement (=.020, p < .001, Model 4) but a slightly
longer time to merge pull requests (f = .063, p < .001, Model 6). The
total number of project commits did not have a significant effect
on the PR acceptance rate.

Projects Contributor Count. Projects with more contributors be-
fore core contributor disengagement had a small but significantly
decline in PR throughput (f = —0.003, p < .001, Model 4) and a
faster time to merge pull requests (f = —0.050, p < .001, Model
6). The number of contributors did not significantly affect the PR
acceptance rate.

Projects Age. Older projects experienced a significantly smaller
reduction in PR throughput after core contributor disengagement
(B=-0.015, p < .001, Model 4), but faster time to merge pull requests
(B = —0.037, p < .001, Model 6). Project age does not significantly
affect PR acceptance rate.

Newcomers after Disengagement. Receiving a higher influx of
new contributors after disengagement is associated with a smaller
increase in PR throughput (8 = .011, p < .001, Model 4), a slight
reduction in PR acceptance (B = .001, p < .05, Model 5), and also
slight longer time to merge pull requests (f =.061, p < .001, Model 6).

Programming Languages Moderated Disengagement Effects in Dis-
tinct Ways. For PR THROUGHPUT (Model 4), projects using C++ (f =
—0.058, p < .001), PHP (B = —0.019, p < .001), and Rust (B = —0.062,
p < .001) exhibited significantly greater reductions. Go (f = —0.010,
p < .01) and Java (B = —0.006, p < .05) also showed small but signifi-
cant negative moderation. In contrast, TypeScript (f = 0.078, p <
.001), C# (B = 0.051, p < .001), C (B = 0.019, p < .001), and Python
(B =0.017, p < .001) were associated with higher throughput after
disengagement.

For PR ACCEPTANCE RATE (Model 5), C++ (= —0.004, p < .001)
and Java (f = —0.002, p < .01) showed significant reduction. Con-
versely, C# (B = 0.006, p < .001) and Go (B = 0.002, p < .05) were
associated with increased acceptance rates.

For TIME TO MERGE (Model 6), shorter merge times were observed
in C++ (f = —0.095, p < .001) and Python (f = —0.036, p < .001). In
contrast, Go (= 0.046, p < .001) and Java (f = 0.037, p < .001) were

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

associated with longer merge times, suggesting slower integration
workflows after disengagement.

Observation 3: Repository characteristics shaped how projects
absorbed the impact of core contributor disengagement. Projects
with more commits or older age saw smaller declines in PR
throughput but experienced longer merge times. In contrast,
projects with more contributors experienced sharper PR through-
put drops but merged more quickly. An influx of newcomers helps
maintain throughput, yet also delays merges.

6 Threats to Validity

Internal Validity. The difference-in-differences technique is a
quasi-experimental design. This approach assumes treated and con-
trol projects would have followed parallel trends in the absence of
core contributor disengagement. While we tested and validated the
parallel trends assumption in our pre-treatment data, unobserved
confounding factors (e.g., concurrent organizational changes, de-
pendency updates, or policy shifts) may still influence project ac-
tivity in ways not attributable solely to contributor disengagement.
To mitigate this, we used a large-scale sample with matched con-
trols and ran robustness checks across alternative disengagement
thresholds and effect length.

External Validity. This study offers robust insights into the im-
pact of core contributors within PR-based workflows, which are
widely adopted across OSS projects [36, 37, 78, 83, 95]. We focus
on three key metrics (PR throughput, acceptance rate, and time to
merge) enabled by the structured, fine-grained data available in
PR-based systems. This focus ensures methodological consistency
and supports scalable analysis across a large number of projects.
While the findings apply to projects using PR workflows, future
work can extend this analysis to include commit-based activities,
broadening the scope to other collaboration models.

Construct Validity. We defined disengagement as the absence of
activity (e.g., commits, PRs, issue comments) from previously ac-
tive core contributors over a defined window. While this threshold-
based approach aligns with prior OSS research [3, 7, 14], it may miss
nuanced forms of disengagement such as diminished influence or
temporary breaks. Our activity-based outcome metrics (PR through-
put, acceptance rate, and time to merge) capture responsiveness but
do not reflect review quality or team dynamics. Core contributor
status is inferred from commit share across the project lifecycle,
which may misclassify contributors whose roles evolve. We also
do not account for contributors’ compensation status, which could
moderate disengagement behavior. Finally, our burst model, defined
as multiple disengagements within the same week and buffered by
12 weeks, limits detection of staggered or smaller-scale events. We
also do not distinguish burst size or role composition, which fu-
ture work should explore to capture heterogeneous disengagement
dynamics.

Additionally, we did not differentiate between paid and volunteer
contributors. Compensation status could influence contributors’
motivations, time commitment, and susceptibility to disengage-
ment, which may moderate the observed effects and can be targeted
by future research.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Lastly, our analysis defines a disengagement “burst” as multiple
core contributors becoming inactive within the same week, with a
12-week buffer before and after to isolate the effects. While this de-
sign helps prevent confounding from overlapping disengagements,
it limits our ability to examine smaller or staggered disengagement
events. For instance, if two disengagements occur within a short
interval but outside a one-week window, they are treated as sep-
arate, and both may be excluded due to proximity. Furthermore,
we do not currently distinguish the size or composition of bursts,
such as whether the departure of three contributors has dispro-
portionately greater impact than that of two. Future work should
explore heterogeneous burst structures, including single-person
disengagements and variations in contributor roles or tenure, to
better understand how the scale and context of disengagement
events affect downstream project outcomes.

Conclusion Validity. Our statistical models yield consistent and
significant results across multiple outcomes and robustness specifi-
cations. However, the practical effect sizes, particularly for accep-
tance rate, are small and should be interpreted accordingly. We use
conservative significance thresholds and include interaction effects
to explore moderators, but correlation does not imply causation, es-
pecially in observational data. While the Difference-in-Differences
approach strengthens our causal inference, we cannot rule out the
influence of unmeasured variables. Future work incorporating qual-
itative insights or mixed-methods validation could help triangulate
and extend our conclusions.

7 Discussion and Conclusion

We now discuss the key findings and directions for further research.

7.1 Disrupted Throughput, Accelerated Merges:
Signs of Compensatory Pressure?

The results for RQ2 show a reduction in PR activity when core
contributors have disengaged: PR throughput drops by 10%, and
PR acceptance rate reduces by .3% (Table 1, Models 1-2). Yet, for
accepted PRs, merges happen 4% faster on average (Table 1, Model
3). This combination suggests a possible compensatory shift in team
behavior. While fewer in number, those PRs that are accepted may
be processed more quickly, potentially reflecting an effort to main-
tain momentum despite reduced capacity. Whether this acceleration
reflects improved efficiency or pressure-driven shortcuts (e.g. faster
but less thorough reviews) remains unclear, and a direction for
future work.

Our findings show that a higher total number of commits by the
disengaged contributor was associated with a steeper decline in
throughput, yet this disengagement had no detectable impact on
pull request acceptance or merge time. This aligns with existing
research indicating that the loss of developers responsible for a
large share of commits, reflecting a low bus factor, can sharply
reduce project activity levels [15]. Contributors with substantial
commit histories play a critical role in sustaining throughput, and
their disengagement leads to significant drops in productivity even
when the acceptance rates of incoming contributions remain stable.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

7.2 Contributor Characteristics as Moderators

Contributor characteristics moderate disengagement effects in dis-
tinct and sometimes unexpected ways. We found that the longer
the tenure of core contributors who leave a project, the smaller the
reduction in PR throughput and acceptance rate; further, we found
that the time-to-merge was reduced. This finding indicates some
resilience in processing volume and decision-making. This pattern
may reflect a temporary increase in urgency, or a ‘recalibration’ of
the workflow (redistribution of responsibilities) among remaining
developers that removes bottlenecks, or the presence of stronger
underlying team structures in projects resilient to the loss of long-
tenured contributors. In contrast, losing contributors with a higher
commit percentage intensified negative effects on throughput and
acceptance, though merges became faster—possibly due to a similar
redistribution mechanism.

7.3 Trading efficiency and capacity

Older projects exhibit a trade-off between efficiency and capacity
following core contributor disengagement. Our results show that
older projects experience some reduction in PR throughput after
core contributors’ disengagement (Table 2, p = —0.015, p < .001,
Model 4), but the PRs tend to be merged more quickly (Table 2, § =
—0.037, p < .001, Model 6). Mature projects may enter a triage mode:
with reduced capacity, remaining core contributors may need to
focus on a smaller subset of PRs, often those that are more critical,
and handle them more efficiently. Such behavior may be enabled by
streamlined workflows, established norms, or technical maturity.
However, as shown in RQ1 (Sec. 4.2.2), older projects have faced a
persistent net loss of core contributors over time [29], indicating
that, despite their short-term procedural resilience, older projects
face mounting sustainability challenges [2]. Their ability to merge
PRs quickly may mask a gradual erosion in review capacity and
throughput, potentially leading to accumulated backlog or contrib-
utor frustration [24]. The combination of recurrent loss of core
talent (RQ1) and reduced PR throughput (RQ2) points to a struc-
tural tension between operational efficiency and long-term viability.
Future research could explore how these projects adapt over time,
whether through tooling, modularization, or shifting governance,
to maintain resilience in the face of ongoing contributor turnover.

7.4 New Contributors Help Sustain Project
Activity

An influx of new contributors can help sustain project activity, as
shown by the smaller decline in PR throughput. However, this also
coincides with longer merge times, which may reflect onboarding
delays, less familiar code contributions, or increased coordination
needs. The presence of newcomers does not significantly impact
PR acceptance rates. Future work could examine targeted onboard-
ing strategies to reduce merge delays associated with newcomer
contributions [26, 75], including mentorship programs, structured
review pairings, or automated onboarding tools that guide new con-
tributors through project conventions and workflows. Additionally,
a more granular analysis of the types of newcomer contributions
(e.g. bug fixes, feature additions, or documentation updates) could
help identify specific activities aligned to newcomer skills [68, 69]

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

that minimize coordination overhead while effectively sustaining
project throughput.

7.5 New Languages, New Lifelines

RQ1 revealed that projects in newer languages like Rust continue to
attract more core contributors than they lose, while older-language
projects such as Java and C show sustained net attrition (Figure 4(c)).
This broader trend provides important context for RQ2, where we
found that different programming languages moderated the effects
of core contributor disengagement on project activity (Table 2,
Models 4-6). While Rust continues to grow in core contributor en-
gagement (RQ1), its projects experienced significant PR throughput
reductions post-disengagement (Table 2 § = —0.062, p < .001), indi-
cating that language popularity alone does not guarantee resilience.
This contrast may reflect a tension between technical promise and
social integration within Rust ecosystems. As seen in recent Linux
kernel debates [31], the adoption of Rust has sparked “almost reli-
gious” divisions between C and Rust communities, with contribu-
tors reporting burnout from non-technical conflicts around infras-
tructure and cultural expectations. These sociotechnical frictions
may limit Rust projects’ ability to quickly redistribute responsi-
bilities after core turnover, despite the language’s reputation for
safety and modern tooling. Thus, Rust’s ecosystem illustrates that
technical advantages alone may not guarantee procedural resilience
without aligned community norms and tooling maturity.

The results presented in this paper are not always intuitive or
expected (such as simultaneously having a reduction in PR through-
put and decrease in time to merge). This seems to imply that more
research is necessary to fully understand the dynamics and con-
sequences of core contributor’s disengagements in open source
projects.

Acknowledgments

This work is supported by Research Ireland (formerly Science Foun-
dation Ireland) grant 13/RC/2094-P2 to Lero.

References

[1] Joshua D Angrist and Jorn-Steffen Pischke. 2009. Mostly harmless econometrics:
An empiricist’s companion. Princeton university press.

[2] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1-12.

[3] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.

A novel approach for estimating truck factors. In 2016 IEEE 24th International

Conference on Program Comprehension (ICPC). IEEE, 1-10.

Ann Barcomb, Andreas Kaufmann, Dirk Riehle, Klaas-Jan Stol, and Brian Fitzger-

ald. 2020. Uncovering the periphery: A qualitative survey of episodic volunteering

in free/libre and open source software communities. IEEE Transactions on Software

Engineering (2020).

[5] Jodo Helis Bernardo, Daniel Alencar da Costa, Uira Kulesza, and Christoph Treude.

2023. The impact of a continuous integration service on the delivery time of

merged pull requests. Empirical Software Engineering 28, 4 (2023), 97.

Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding the

factors that impact the popularity of GitHub repositories. In 2016 IEEE interna-

tional conference on software maintenance and evolution (ICSME). IEEE, 334-344.

[7] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and
Igor Steinmacher. 2022. Will you come back to contribute? Investigating the
inactivity of OSS core developers in GitHub. Empirical Software Engineering 27,
3(2022), 76.

[8] Marco Caliendo and Sabine Kopeinig. 2008. Some practical guidance for the
implementation of propensity score matching. Journal of Economic Surveys 22, 1
(2008), 31-72.

4

G

How Does Core Contributor Disengagement Impact Open Source Project Activity? A Quasi-Experiment

=

[10]

[11]

[12]

[14]

[15

[16]

[17]

(18]

[19]

[20

[21]

[22

[23]

[24]

[25]

[26

[27

[28]

[29]

[30]

[31]

[32

[33]

[34

Brantly Callaway and Pedro HC Sant’Anna. 2021. Difference-in-differences with
multiple time periods. Journal of econometrics 225, 2 (2021), 200-230.

Annali Casanueva, Davide Rossi, Stefano Zacchiroli, and Théo Zimmermann.
2025. The impact of the COVID-19 pandemic on women’s contribution to public
code. Empirical Software Engineering 30, 1 (2025), 1-35.

Yunqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinken-
reich. 2025. Appendix to “How Does Core Contributor Disengagement Impact
Open Source Project Activity?”. https://figshare.com/s/dddc84c102241c665be6
Yungqi Chen, Zhiyuan Wan, Yifei Zhuang, Ning Liu, David Lo, and Xiaohu Yang.
2025. Understanding the OSS Communities of Deep Learning Frameworks: A
Comparative Case Study of PyTorch and TensorFlow. ACM Transactions on
Software Engineering and Methodology 34, 3 (2025), 1-30.

Jinghui Cheng and Jin LC Guo. 2019. Activity-based analysis of open source soft-
ware contributors: Roles and dynamics. In IEEE/ACM 12th International Workshop
on Cooperative and Human Aspects of Software Engineering. IEEE, 11-18.

Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In 2017 11th Joint meeting on foundations of software engineering. 186—196.
Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 499-503.

Kevin Crowston and James Howison. 2005. The social structure of free and open
source software development. First Monday 10, 2 (2005).

Kevin Crowston, Kangning Wei, Qing Li, and James Howison. 2006. Core and
periphery in free/libre and open source software team communications. In 39th
annual Hawaii international conference on system sciences (HICSS 06), Vol. 6. IEEE,
118a-118a.

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 560-564.

Clément De Chaisemartin and Xavier d’Haultfoeuille. 2023. Two-way fixed
effects and differences-in-differences with heterogeneous treatment effects: A
survey. The econometrics journal 26, 3 (2023), C1-C30.

Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2021. Representation of
developer expertise in open source software. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 995-1007.

Tapajit Dey and Audris Mockus. 2020. Effect of technical and social factors
on pull request quality for the npm ecosystem. In 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1-11.
Christina Dunbar-Hester. 2020. Hacking diversity: The politics of inclusion in open
technology cultures. Princeton University Press.

Ramtin Ehsani, Rezvaneh Rezapour, and Preetha Chatterjee. 2023. Exploring
moral principles exhibited in oss: A case study on github heated issues. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2092-2096.

Meng Fan, Yuxia Zhang, Klaas-Jan Stol, and Hui Liu. 2025. Core Developer
Turnover in the Rust Package Ecosystem: Prevalence, Impact, and Awareness.
ACM on Software Engineering 2, FSE (2025), 2759-2781.

Hongbo Fang, Hemank Lamba, James Herbsleb, and Bogdan Vasilescu. 2022.
"This is damn slick!" estimating the impact of tweets on open source project
popularity and new contributors. In 44th International Conference on Software
Engineering. 2116-2129.

Zixuan Feng, Katie Kimura, Bianca Trinkenreich, Anita Sarma, and Igor Stein-
macher. 2024. Guiding the way: A systematic literature review on mentoring
practices in open source software projects. Information and Software Technology
(2024), 107470.

Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2020. Turnover in
open-source projects: The case of core developers. In XXXIV Brazilian Symposium
on Software Engineering. 447-456.

Mivian Ferreira, Marco Tulio Valente, and Kecia Ferreira. 2017. A comparison of
three algorithms for computing truck factors. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). IEEE, 207-217.

Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software.
In 2015 10th joint meeting on foundations of software engineering. 829-841.
Hana Frluckaj, Laura Dabbish, David Gray Widder, Huilian Sophie Qiu, and
James D Herbsleb. 2022. Gender and participation in open source software
development. ACM on Human-Computer Interaction 6, CSCW2 (2022), 1-31.

B. Cameron Gain. 2024. The New Stack: Linus Torvalds: C vs. Rust Debate Has
‘Religious Undertones’. https://thenewstack.io/linus-torvalds-c-vs-rust-debate-
has-religious-undertones/ Accessed: June 2025.

Andrew Gelman and Jennifer Hill. 2007. Data analysis using regression and
multilevel/hierarchical models. Cambridge university press.

GitHub. 2024. Octoverse 2024: The State of Open Source and Software Develop-
ment. https://github.blog/news-insights/octoverse/octoverse-2024/ Accessed:
November 2023.

Mathieu Goeminne and Tom Mens. 2013. A comparison of identity merge
algorithms for software repositories. Science of Computer Programming 78, 8

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

(2013), 971-986.

Andrew Goodman-Bacon. 2021. Difference-in-differences with variation in
treatment timing. Journal of econometrics 225, 2 (2021), 254-277.

Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In 36th international con-
ference on software engineering. 345-355.

Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work prac-
tices and challenges in pull-based development: The contributor’s perspective.
In 38th international conference on software engineering. 285-296.

Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: The integrator’s
perspective. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. IEEE, 358-368.

Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May,
Geraldine J Noa-Guevara, Liam James Russell, Griselda G Cuevas Zambrano,
Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A Gerosa, et al. 2021. The
long road ahead: Ongoing challenges in contributing to large oss organizations
and what to do. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2
(2021), 1-30.

Morela Hernandez, David A. Hyman, Charles W. Ibser, and Sonali K. Shah. 2021.
The Digital Economy Runs on Open Source. Here’s How to Protect It. Har-
vard Business Review (21 September 2021). https://hbr.org/2021/09/the-digital-
economy-runs-on-open-source-heres-how-to-protect-it

Giuseppe Iaffaldano, Igor Steinmacher, Fabio Calefato, Marco Aurélio Gerosa,
and Filippo Lanubile. 2019. Why do developers take breaks from contributing to
OSS projects. A preliminary analysis. CoRR abs/1903.09528 (2019) (2019), 1-8.
Guido W Imbens. 2024. Causal inference in the social sciences. Annual Review of
Statistics and Its Application 11 (2024).

Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M Gonzalez-
Barahona. 2009. Using software archaeology to measure knowledge loss in
software projects due to developer turnover. In 2009 42nd Hawaii International
Conference on System Sciences. IEEE, 1-10.

Paul CD Johnson. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to
random slopes models. Methods in ecology and evolution 5, 9 (2014), 944-946.
Nicolas Jullien, Robert Viseur, and Jean-Benoit Zimmermann. 2025. A theory of
FLOSS projects and Open Source business models dynamics. Journal of Systems
and Software 224 (June 2025), 112383. https://doi.org/10.1016/j.js5.2025.112383
Stefan Koch and Georg Schneider. 2002. Effort, co-operation and co-ordination
in an open source software project: GNOME. Information Systems Journal 12, 1
(2002), 27-42.

Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen,
and Bart De Water. 2018. Studying pull request merges: A case study of shopify’s
active merchant. In 40th international conference on software engineering: software
engineering in practice. 124-133.

Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ Van
Den Brand. 2012. Who’s who in Gnome: Using LSA to merge software repository
identities. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 592-595.

Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. 2019. Predicting
pull request completion time: a case study on large scale cloud services. In 2019
27th acm joint meeting on european software engineering conference and symposium
on the foundations of software engineering. 874-882.

Danaja Maldeniya, Ceren Budak, Lionel P Robert Jr, and Daniel M Romero. 2020.
Herding a deluge of good samaritans: How github projects respond to increased
attention. In Web Conference 2020. 2055-2065.

Josianne Marsan, Mathieu Templier, Patrick Marois, Bram Adams, Kevin Carillo,
and Georgia Leida Mopenza. 2018. Toward solving social and technical prob-
lems in open source software ecosystems: using cause-and-effect analysis to
disentangle the causes of complex problems. IEEE Software 36, 1 (2018), 34-41.
Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
KaUstner. 2022. " Did you miss my comment or what?" understanding toxicity
in open source discussions. In Proceedings of the 44th international conference on
software engineering. 710-722.

Courtney Miller, Mahmoud Jahanshahi, Audris Mockus, Bogdan Vasilescu, and
Christian Késtner. 2025. Understanding the response to open-source dependency
abandonment in the npm ecosystem. In 47th IEEE/ACM International Conference
on Software Engineering.

Courtney Miller, David Gray Widder, Christian Késtner, and Bogdan Vasilescu.
2019. Why do people give up flossing? a study of contributor disengagement in
open source. In Open Source Systems: 15th IFIP WG 2.13 International Conference,
0SS 2019, Montreal, QC, Canada, May 26-27, 2019, Proceedings 15. Springer, 116—
129.

Audris Mockus. 2010. Organizational volatility and its effects on software defects.
In eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. 117-126.

Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309-346.

https://figshare.com/s/dddc84c102241c665be6
https://thenewstack.io/linus-torvalds-c-vs-rust-debate-has-religious-undertones/
https://thenewstack.io/linus-torvalds-c-vs-rust-debate-has-religious-undertones/
https://github.blog/news-insights/octoverse/octoverse-2024/
https://hbr.org/2021/09/the-digital-economy-runs-on-open-source-heres-how-to-protect-it
https://hbr.org/2021/09/the-digital-economy-runs-on-open-source-heres-how-to-protect-it
https://doi.org/10.1016/j.jss.2025.112383

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

[57

[58]

[59]

[60]

[61]

[62

[63]

[64]

[65]

[66]

[67]

[68

N
)

[70]

[71]

[72

[73

[74]

[75]

Shinichi Nakagawa and Holger Schielzeth. 2013. A general and simple method
for obtaining R2 from generalized linear mixed-effects models. Methods in ecology
and evolution 4, 2 (2013), 133-142.

Paulo Anselmo da Mota Silveira Neto, Umme Ayda Mannan, Eduardo Santana
De Almeida, Nachiappan Nagappan, David Lo, Pavneet Singh Kochhar, Cuiyun
Gao, and Iftekhar Ahmed. 2021. A deep dive into the impact of COVID-19 on
software development. IEEE Transactions on Software Engineering 48, 9 (2021),
3342-3360.

Mian Qin, Yuxia Zhang, Klaas-Jan Stol, and Hui Liu. 2025. Who Will Stop
Contributing to OSS Projects? Predicting Company Turnover Based on Initial
Behavior. ACM on Software Engineering 2, FSE (2025), 2782-2805.

Huilian Sophie Qiu. 2022. Understanding and Designing Mechanisms for Attracting
and Retaining Open-Source Software Contributors. Ph.D. Dissertation. Carnegie
Mellon University.

Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the
pull requests of github. In 11th working conference on mining software repositories.
364-367.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A
large scale study of programming languages and code quality in github. In 22nd
ACM SIGSOFT international symposium on foundations of software engineering.
155-165.

Filippo Ricca and Alessandro Marchetto. 2010. Are heroes common in FLOSS
projects?. In 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. 1-4.

Martin P Robillard. 2021. Turnover-induced knowledge loss in practice. In 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1292-1302.

Jonathan Roth, Pedro HC Sant’Anna, Alyssa Bilinski, and John Poe. 2023. What’s
trending in difference-in-differences? A synthesis of the recent econometrics
literature. Journal of Econometrics 235, 2 (2023), 2218-2244.

Giuseppe Russo Latona, Christoph Gote, Christian Zingg, Giona Casiraghi, Luca
Verginer, and Frank Schweitzer. 2024. Shock! Quantifying the Impact of Core
Developers’ Dropout on the Productivity of OSS Projects. In Companion ACM
Web Conference 2024. 706~709.

Toannis Samoladas, Lefteris Angelis, and Ioannis Stamelos. 2010. Survival analysis
on the duration of open source projects. Information and Software Technology 52,
9 (2010), 902-922.

Fabio Santos, Jacob Penney, Jodo Felipe Pimentel, Igor Wiese, Igor Steinmacher,
and Marco A Gerosa. 2023. Tell me who are you talking to and i will tell you
what issues need your skills. In 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR). IEEE, 611-623.

Fabio Santos, Bianca Trinkenreich, Jodo Felipe Pimentel, Igor Wiese, Igor Stein-
macher, Anita Sarma, and Marco A Gerosa. 2022. How to choose a task?
mismatches in perspectives of newcomers and existing contributors. In 16th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement. 114-124.

Jaydeb Sarker, Asif Kamal Turzo, and Amiangshu Bosu. 2025. The Landscape of
Toxicity: An Empirical Investigation of Toxicity on GitHub. Proceedings of the
ACM on Software Engineering 2, FSE (2025), 623-646.

Daniel J Schad, Shravan Vasishth, Sven Hohenstein, and Reinhold Kliegl. 2020.
How to capitalize on a priori contrasts in linear (mixed) models: A tutorial.
Journal of memory and language 110 (2020), 104038.

Andreas Schilling. 2014. What do we know about FLOSS developers’ attraction,
retention, and commitment? A literature review. In 2014 47th Hawaii International
Conference on System Sciences. IEEE, 4003-4012.

Daricélio Moreira Soares, Manoel Limeira de Lima Jdnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance factors of pull requests in open-source
projects. In 30th annual ACM symposium on applied computing. 1541-1546.
Fangchen Song, Ashish Agarwal, and Wen Wen. 2024. The impact of generative
Al on collaborative open-source software development: Evidence from GitHub
Copilot. arXiv preprint arXiv:2410.02091 (2024).

Igor Steinmacher, Sogol Balali, Bianca Trinkenreich, Mariam Guizani, Daniel
Izquierdo-Cortazar, Griselda G Cuevas Zambrano, Marco Aurelio Gerosa, and
Anita Sarma. 2021. Being a mentor in open source projects. Journal of Internet

Yungqi Chen, Klaas-Jan Stol, Fabio Santos, Daniel German, and Bianca Trinkenreich

Services and Applications 12 (2021), 1-33.

Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. 2017. Gender differences and bias in open
source: Pull request acceptance of women versus men. Peer] Computer Science 3
(2017), e111.

Christopher Glen Thompson, Rae Seon Kim, Ariel M Aloe, and Betsy Jane Becker.
2017. Extracting the variance inflation factor and other multicollinearity diag-
nostics from typical regression results. Basic and applied social psychology 39, 2
(2017), 81-90.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In 36th international

conference on Software engineering. 356-36
Jason Tsay, Laura Dabbish, and James Herbsleb 2014. Let’s talk about it: evaluat-

ing contributions through discussion in GitHub. In 22nd ACM SIGSOFT interna-
tional symposium on foundations of software engineering. 144-154.

Qiang Tu et al. 2000. Evolution in open source software: A case study. In Pro-
ceedings 2000 International Conference on Software Maintenance. IEEE, 131-142.
John Wilder Tukey et al. 1977. Exploratory data analysis. Vol. 2. Springer.
Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 644-655.
Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,
and Mark GJ van den Brand. 2014. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In 2014 IEEE international conference on
software maintenance and evolution. IEEE, 401-405.

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In 2015 10th joint meeting on foundations of software engineering.
805-816.

Chengcheng Wan, Shicheng Liu, Henry Hoffmann, Michael Maire, and Shan Lu.
2021. Are machine learning cloud apis used correctly?. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 125-137.

Mairieli Wessel, Joseph Vargovich, Marco A Gerosa, and Christoph Treude. 2023.
Github actions: the impact on the pull request process. Empirical Software
Engineering 28, 6 (2023), 131.

Laurie Williams and Robert R Kessler. 2003. Pair programming illuminated.
Addison-Wesley Professional.

Jeffrey M Wooldridge. 2016. Introductory econometrics a modern approach. South-
Western cengage learning.

Wenxin Xiao, Hao He, Weiwei Xu, Yuxia Zhang, and Minghui Zhou. 2023. How
early participation determines long-term sustained activity in github projects?.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 29-41.

Yaxuan Yin and Jacob Thebault-Spieker. 2025. The Effect of Population Den-
sity on Remote Humanitarian Mapping Activities: A Triple-Difference Analysis.
Proceedings of the ACM on Human-Computer Interaction 9, 2 (2025), 1-21.

Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. 2016. Determi-
nants of pull-based development in the context of continuous integration. Science
China Information Sciences 59 (2016), 1-14.

Xunhui Zhang, Yue Yu, Georgios Gousios, and Ayushi Rastogi. 2022. Pull re-
quest decisions explained: An empirical overview. IEEE Transactions on Software
Engineering 49, 2 (2022), 849-871.

Minghui Zhou and Audris Mockus. 2015. Who will stay in the floss community?
modeling participant’s initial behavior. IEEE Transactions on Software Engineering
41, 1 (2015), 82-99.

Shurui Zhou, Bogdan Vasilescu, and Christian Késtner. 2019. What the fork: a
study of inefficient and efficient forking practices in social coding. In 2019 27th
ACM joint meeting on european software engineering conference and symposium
on the foundations of software engineering. 350-361.

Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of code
contribution: From patch-based to pull-request-based tools. In 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 871—
882.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reasons for Contributor Turnover
	2.2 Consequences of Contributor Turnover

	3 Research Design
	3.1 Causal Inference Framework
	3.2 Data Collection and Preparation
	3.3 Treatment and Control Groups
	3.4 Dependent Variables
	3.5 Moderating Variables
	3.6 Control Variables
	3.7 Model Specification

	4 Prevalence of Core Contributor Disengagement in the Past Decade
	4.1 Core Contributor (Dis)Engagement
	4.2 Trends across GitHub Repositories Based on Project Characteristics

	5 Impact of Core Contributor Disengagement on Project Activity
	5.1 Moderating Disengagement Effects

	6 Threats to Validity
	7 Discussion and Conclusion
	7.1 Disrupted Throughput, Accelerated Merges: Signs of Compensatory Pressure?
	7.2 Contributor Characteristics as Moderators
	7.3 Trading efficiency and capacity
	7.4 New Contributors Help Sustain Project Activity
	7.5 New Languages, New Lifelines

	References

